
Two Paradigms of Composition

Ashley McNeile
Metamaxim Ltd.

48 Brunswick Gardens
London, U.K.

ashley.mcneile@metamaxim.com

ABSTRACT
We use a small example to discuss how two different formal
modeling languages address the interaction between data
and behavior using parallel composition. We use this discus-
sion to highlight the distinction between synchronous and
asynchronous semantics of parallel composition, a distinc-
tion not hitherto properly discussed in the context defining
the interaction between behavior and global or shared data.
We discuss some uses of parallel composition in systems en-
gineering, and some considerations that determine whether
synchronous or asynchronous semantics are best aligned to
these uses.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation—Interactive and reactive computation, Par-
allelism and concurrency ; D.2.2 [Software Engineering]:
Design Tools and Techniques—State diagrams

General Terms
Behavior Modeling, Concurrency, Composition

Keywords
parallel composition, process algebra, labeled transition sys-
tems, semantics, synchronous reactive languages

1. INTRODUCTION
This paper is concerned with modeling computation where

data and behavior interact, and how parallel composition
techniques, as have been developed and explored widely in
the context of process algebras such as CSP, CCS and ACP,
are used to model such interaction. Our aim is to high-
light some issues in the definition of the semantics of par-
allel composition that have significant impact on when and
how different languages should be used. In particular, we
show that there is a distinction to be made between syn-
chronous and asynchronous parallel composition, reflecting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BM-FA Workshop 6 June 2011 Birmingham, UK.
Copyright c© 2011 ACM 978-1-4503-0617-1/11/06 ...$10.00.

the degree of concurrency assumed to be possible between
composed behavioral abstractions.

2. THE BANKING EXAMPLE
The example that we shall use as a basis for the discussion

is this:

A certain bank allows its customers to open and maintain
any number of separate accounts, but imposes the rule that
a customer may only withdraw funds from an account if the
result of the withdraw is that she remains in credit overall,
where “overall” means across all of her accounts.

This example is chosen because it is easy to understand
but is also sufficiently rich to raise interesting questions con-
cerning the way in which data based constraints are modeled
using compositional techniques. The obvious interesting fea-
ture of the problem is that the constraint on doing a with-
draw from one of a customer’s accounts is “non-local”, as
it requires knowledge of the state across the other accounts
held by the customer. The interesting question is this: all
these accounts clearly exist in parallel, but to what extent
are they concurrent?

2.1 Structure of this Paper
We describe two different models of the this example, in

two different composition based languages: Protocol Model-
ing and mCRL2. We then:

1. Discuss the differences between these two models of
the bank, and how these are driven by the different
semantics of the two languages used.

2. Discuss the different software engineering principles
that have shaped the semantics of the two languages.

3. Examine how the distinction between synchronous and
asynchronous composition has been has been addressed
in work on process algebra, and argue that it needs to
be re-examined.

4. Take a fresh look at the uses of behavior composition
in the software development and verification process.

2.2 Validity of Assessment
Inevitably in papers of this sort there is a danger of us-

ing modeling languages inappropriately and hence abusing
or misrepresenting their features or capabilities. In extreme

BANK - PROTOCOL MODEL

closedOpen

Deposit

Close

owner := Open.customer;
balance := 0;

balance := balance +
Deposit.amount;

active

Withdraw

Account1

balance := balance –

Register

OpenCustomer

totalBalance:
totalBalance := 0;
for acct in select(Account1 where Account1.owner == this) {
totalBalance := totalBalance + acct.balance;
}

return totalBalance;

registered

Withdrawbalance := balance –
Withdraw.amount

DState Function:
if (this.Account1.owner.totalBalance ≥ 0)

return “customer in credit”;
else

return “customer over drawn”;

Withdraw
customer

over drawn

Account2
customer
in credit

External (visible) transition

Derived state (calculated
by a State Function)

Deposit

xxx

Figure 1: Bank Protocol Model

cases this can invalidate the conclusions reached in a com-
parison of the type this paper attempts. However, we believe
that this is not an issue here for the following reasons:

‚ The Protocol Model solution was developed by the au-
thor, who is also author of the Protocol Modeling tech-
nique.

‚ The mCRL2 model is based on a solution provided by
Michel Reniers1 who has been involved in the develop-
ment of both mCRL2 and of ACP, the process algebra
on which it is based.

3. THE TWO MODELS
In this section we describe the two models of the banking

example given in Section 2. Our interest is in how the models
address behavioral constraints, and to focus on this both
models present a very simplified view of banking: account
behavior is confined to deposits and withdraws, we do not
model processes concerned with account opening or closure,
and we ignore such issues of security and authorization.

Sources for the two models can be downloaded from:
http://www.metamaxim.com/download/models/paradigms.zip.

1M.A. Reniers, Assistant Professor, Technische Universiteit
Eindhoven.

BANK - mCRL2 MODEL

closed
Open

Deposit

Close

Account

Register

Open

Customer

!D_Sync(owner,Deposit.amount);
balance := balance + Deposit.amount;

owner := Open.customer;
balance := 0;

(totalBalance - amount > 0) {
?W_Sync(this, amount);
totalBalance := totalBalance - amount;
}

active

block (!D_Sync, ?D_Sync, !W_Sync, ?W_Sync)

registered

?D_Sync(this, amount);
totalBalance := totalBalance + amount;

Open
Withdraw

!W_Sync(owner,Withdraw.amount);
balance := balance - Withdraw.amount;

External (visible) transition
Internal (invisible) transition
Guard
Send and receive message
Blocks “ lone” sends and receives

(totalBalance - amount > 0)
!Msg(…); ?Msg(…);
block(…)

Deposit

Figure 2: Bank mCRL2 Model

3.1 Protocol Model
The first language is Protocol Modeling. This is a state-

transition based modeling technique that uses ideas bor-
rowed from process algebras to describe event based sys-
tems that have rich interaction between data and behavior.
A full description is given in McNeile and Simons [3]. Using
Protocol Modeling, a software system is modeled as a set
of machines called protocol machines which work together
in composition to ensure that the behavioral constraints are
met. Protocol machines have behavior and data, and are
conceptually like “objects” in an Object Oriented paradigm;
so machines own data and only a machine that owns an item
of data may alter its value. Unlike some other compositional
techniques (such as mCRL2, the other we use in this paper)
one machine in a Protocol Model is allowed to access the
data owned by other, composed, machines.

A Protocol Model for the banking example is shown in
Figure 1. The model consists of two “entities”: Customer
and Account. Customer is described using a single machine
shown at the top of Figure 1 and Account by the composed
machines Account1 and Account2 shown in the lower part
of the figure. These work together as follows:

‚ The Customer machine ensures that an Account may
only be opened for a customer who is in the state reg-

istered. However, once registered, any number of ac-
counts may be opened for that customer.

‚ The box below the state diagram shows that customer
has a derived attribute called totalBalance. This is

the sum of the balances of the accounts owned by this
customer. These accounts are selected based on an
attribute owner in the account, a “foreign key” that
points to the owning customer.

‚ Account1 reflects the familiar account lifecycle. The
bubbles attached to the transitions show how the stored
attributes of this machines are updated. With the
Open event the owner is stored (using the customer
identifier carried in the Open event), and the balance
initialized. The balance is updated by Deposit and
Withdraw events (using the amount attribute carried
in the event) in the obvious way.

‚ Account2 enforces the constraint that no Withdraw
event can take the total balance of the customer be-
low zero. This machine has a derived state, mean-
ing that the state is calculated on demand by a state
function shown below the diagram for Account2. The
state function uses the totalBalance of the owner of
the account to distinguish between the customer be-
ing in credit and being over drawn. The semantics
of the transition with its ending state as customer in

credit is that this state must pertain after a Withdraw
has taken place.

Note that Withdraw is subject to the constraints of both Ac-
count1 and Account2, so that a withdraw can only happen
if both Account1 is in the state active and Account2 ends
up in state customer in credit. If either Account1 or Ac-
count2 does not allow the event, the event cannot take place
(is refused). The composition is therefore in line with the ‖
composition of CSP, whereby an event being refused by any
component of a composition gives refusal by the composi-
tion.

Instantiation of the model entails instantiation of a Cus-
tomer machine for each customer who registers with the
bank, and instantiation of an Account1 + Account2 pair
for each account opened. All the machines instantiated are
composed in parallel.

3.2 mCRL2 Model
The mCRL2 language supports modeling the behavior of

behavioral entities that run in parallel and interact with each
other. The language has its theoretical basis in the process
algebra ACP (Algebra of Communicating Processes) [7]. An
mCRL2 model for the bank example is presented graphically
in Figure 2 for comparison with the Protocol Model. This
figure renders the mCRL2 model in graphical form, and this
has required some interpretation of the language constructs,
for instance using topological loops to represent recursion.
But this does not change the essentials of the solution.

Like the Protocol Model, the mCRL2 model consists of
two “entities”: Customer described by the machine shown
in the upper part of Figure 2 and Account described by
machine shown in the lower part of the figure. The ba-
sic state/transition topology of the Customer and Account
machines are the same as the Customer and Account1 ma-
chines in the Protocol Model. This is to be expected, as both
models represent the same situation. However, the way in
which the behavioral constraint on withdraws is treated is
quite different. The basic idea in the mCRL2 model is that
the customer machine maintains a total balance of all the
accounts it owns, and uses this to “give permission” for a

Withdraw. This means that the Customer machine has to
participate in any event that changes the balance of any
account it owns. This participation is achieved using mes-
sages, D Sync and W Sync, that an account machine writes
to its owning customer machine in the context of a Deposit
or Withdraw respectively. Using a guard, the customer ma-
chine can refuse to receive a W Sync and hence prevent an
offending Withdraw event. More specifically:

‚ The block statement (shown between the two state
diagrams) says that send and receive actions cannot
happen by themselves. This makes the communica-
tions between Account and Customer synchronous.

‚ The Account machine sends a message as a part of
handling a Deposit or Withdraw, telling the owning
customer of the amount that has been deposited or
withdrawn.

‚ The Customer machine receives the message and up-
dates its totalBalance. But the receive of the W Sync
has a guard requiring that the resultant totalBalance
be positive.

‚ As the block requires the send and receive to happen
together, if the guard evaluates to false so that the
receive of the W Sync message cannot happen, then
the send cannot happen either. The event Withdraw
in Account that caused the send is thereby disallowed.

As with the Protocol Model, instantiation of the mCRL2
model entails instantiation of a Customer machine for each
customer who registers with the bank, and instantiation of
an Account machine for each account opened. All the ma-
chines instantiated are composed in parallel.

4. DISCUSSION
An obvious difference between these two models is the fact

that the mCRL2 model maintains a total balance in the cus-
tomer machine whereas the Protocol Model does not, as it
calculates the total balance on-the-fly from the underlying
accounts. This difference is not an artefact of the way in
which we have chosen to build the two models, but is dic-
tated by the underlying principles on which the languages
are predicated, and which appear to be in conflict. A key
aim of this paper is to isolate and understand this conflict.

Protocol Modeling supports a compositional style of mod-
eling and aims to allow the construction of models that com-
bine:

‚ Economy and simplicity of representation, with

‚ Encapsulation of behavior.

The first (economy and simplicity of representation) refers
to the idea that the set facts stored in a model should be mu-
tually independent, analogous to a basis of a vector space2:
so that no one stored fact in a model can be computed from
others. This is an idea that, although it has no formal basis
in Computer Science, has emerged as a principle of soft-
ware engineering known by (among other terms) the DRY
(“Don’t Repeat Yourself”) Principle.3 This principle distills

2See http://en.wikipedia.org/wiki/Basis_(linear_algebra)
3See http://en.wikipedia.org/wiki/Don’t_repeat_yourself

accumulated experience in building models where data and
behavior interact, which indicates that models which contain
redundancy tend to be more complex, fragile and difficult
to amend than models that do not. Keeping a total balance
at the customer level is not compatible with this principle,
as it duplicates the information in the individual accounts
and so, in principle, could be re-established if it were to be
lost by adding the account balances together. The Protocol
Model solution uses a derived attribute, thereby conforming
to the DRY principle. An insight into the wisdom of the
DRY principle can be obtained by considering the follow-
ing change: Suppose that it is required to add a new event
to the model that transfers an account from one customer
to another. In the Protocol Model a new event, Change
Owner, can be added to Account1 that changes the value of
the owner attribute to point to a different customer. Be-
cause the Customer machine contains no information about
the owned accounts, no change is required to this machine.
Making the same change to the mCRL2 model is more com-
plex, as the totalBalance attributes of both the old and the
new owners of the account would have to be adjusted to re-
flect the change, so the customer level machines must also
engage in the event.

The second aim (encapsulation of behavior) is to capture
the protocol of an entity locally, within the definition of that
entity. Withdraw is in the protocol of account and not of
the protocol of customer, so encapsulation dictates that the
rules constraining withdraws should belong to the account
entity. In the the Protocol Model the protocol for Withdraw
is appropriately located in Account1 and Account2, conform-
ing to encapsulation; but in the mCRL2 model part of this
protocol is encoded in the guard in Customer.

The mCRL2 language follows thinking that has emerged
from work on process algebras, which concludes that shar-
ing of data is not compatible with the ability to understand
or reason about the behavior when parallel composition is
involved. For instance, in their book on ACP (which is the
theoretical basis for mCRL2) Baeten et al. [7] state that:

The independent execution of parallel processes makes it dif-
ficult or impossible to determine the values of global variables
at any given moment. It turns out to be simpler to let each
process have its own local variables, and to denote exchange
of information explicitly via message passing.

As a result, the mCRL2 language provides no means where-
by one process can directly access data owned by another; so
when data in one process is needed by another it has to be
passed explicitly in a message. The need to maintain a total
balance at the customer level then becomes unavoidable, as
establishing the customer balance (and ensuring it remains
in credit) would require a synchronous message interaction
across the set of accounts owned by a customer, which is
not possible as the membership of this set is not statically
defined in the model.

The divergence of thinking that these two solutions re-
veal can be understood in terms of two related topics:

‚ Distinctions in the semantics of composition, and

‚ Consideration of different roles that modeling plays in
software development.

S = P||Q||R

A
xP

B
yQ

R
x

y
not A
and

not B

zA
and

B
else

State Function:
if (state of P == A) A := true;
if (state of Q == B) B := true;
if (not A && not B) return “not A and not B”;
else if (A && B) return “A and B”;
else return “else”;

SYNCHRONOUS VS. ASYNCHRONOUS

With Asynchronous semantics, z is possible in S.
With Synchronous semantics, z is not possible in S.

Figure 3: Synchronous vs. Asynchronous

We discuss these in turn in the following two sections.

5. SEMANTICS OF COMPOSITION
Suppose that the machines that represent a customer’s

accounts are distributed, so that each account instance is
hosted by a different processor. It could be that, at all times,
at least one of the account machines owned by a customer is
in mid execution of some local transaction and so unable to
contribute a coherent current balance to the customer total.
One would be correct in supposing that this level of con-
currency is not compatible with the notion, entailed in the
Protocol Model shown in Figure 1, that the customer ma-
chine can derive, at will, the total balance of all its accounts.
The degree of concurrency yielded by this distribution gives
rise to asynchronous composition, whereas the semantics of
the Protocol Model language is based on synchronous com-
position.

5.1 Illustration of Semantics
The difference between these two interpretations of com-

position can be seen informally in the example shown in
Figure 3. This figure shows a model with a machine S that
consists of three machines, tP, Q, Ru, composed using ‖. We
take the ‖ operator to have the CSP meaning, so that an ac-
tion is refused by S if refused by at least one component. We
suppose that P and Q start at their respective black dots

and therefore R starts in the state not A and not B. This
means that P allows x, Q allows y, and R allows both x and
y. Under the rules of ‖ composition, S therefore allows x
and y. Now consider how the execution of S advances under
two different assumptions about the behavioral semantics,
synchronous and asynchronous:

Synchronous Composition.
In the synchronous case, S advances one action at a time.

CSP Conditional Operators

CSP [4] includes a mechanism to assign values to variables and a conditional operator whereby the assigned values of
variables can influence behavior.

pa Ñ P ć cond č b Ñ P q (1)

In (1) the process expression to the right (action a followed by P) is chosen if cond is true, otherwise the process expression
to the left is chosen. However, Hoare notes that to deal effectively with assignment in concurrent processes, it is necessary to
impose a restriction that no variable assigned in one concurrent process can ever be used in another.

ACP Guarded Commands

ACP [7] includes a concept called a guarded command, of the form Φ :Ñ P , with the intuitive meaning ‘if Φ then P ’.
This is clearly similar to the conditional operator of CSP, in that the CSP expression in (1) can be expressed in ACP as
pcond :Ñ P ` cond :Ñ Qq. However, there is no stipulation in ACP, as there is in CSP, that a propositional variable such
as Φ is local to a process: it can be given a value in one and used in another.

The ACP authors note that, because a propositional variable (such as Φ) in one process can be changed by a com-
posed process it is necessary to consider the behavior [of a process] for all possible valuations of the propositional variables in
all states that may occur during the execution of the process.

LOTOS with Global Variables

LOTOS (Language of Temporal Ordering Specification) is a process algebra based on early versions of CCS and CSP.
In 1995, Khoumsi and Bochmann explored the possibility of introducing support for global variables into LOTOS [1]. The
approach is to encase each action, σ, in a transaction ăθ, σ, φą by adding an enabling condition, θ, and an update function, φ.
An action is only enabled if the enabling condition is true (so this is the same as a guard); and execution of the action results
also in execution of the update function that gives guards new values.

In order to ensure atomicity of transactions, required to serialize updates to a global variable, the authors employ a
superstructure (borrowed from database theory) comprising locking primitives supporting read and write locks, along with a
two phase locking protocol and a timestamp based priority mechanism for clearing deadlocked transactions.

Table 1: Examples of Data Treatment

Suppose x happens. P is then in state A, Q is still at its
black dot. R evaluates its state to else (as it is in neither
of its other two states). As R refuses all actions of its alpha-
bet {x,y,z} when in state else, under the rules of ‖ nothing
further can happen in S. An exactly similar argument ap-
plies if y happens first. These are the only two possibilities,
and in neither is z possible in S.

Asynchronous Composition.
In the asynchronous case, there is no discipline of advanc-

ing one action at a time. So x and y could take place concur-
rently and the first coherent state that R obtains could be A

and B. In this case, R is now in a state where z is possible.
As z is not in the alphabets of P and Q, z is then possible
in S.

5.2 Treatment in Process Algebra
Some authors in process algebra have made a similar dis-

tinction between synchronous and asynchronous composi-
tion, notably:

‚ Bergstra and Klop with their formulation of ASP [8],
a synchronous variant of the (asynchronous) ACP al-
gebra. They use the term synchronous co-operation
for the composition used in ASP and asynchronous
co-operation for that in ACP [9].

‚ Milner with his formulation of SCCS [12], an elegant
synchronous variant of his (asynchronous) CCS.

Both of these algebras model synchronous behavior by re-
quiring that all processes in a composition must engage in

every step, so it is not possible for a process to execute
an action independently of its peers. This means that a
composite progresses as though to a clock, with every com-
ponent process performing exactly one action to every tick.
It is important to point out, as Bergstra et al. do, that
this distinction is different from that between synchronous
and asynchronous communication, which concerns whether
or not the send and receive actions on a message happen
simultaneously.

Milner’s SCCS includes an idle action which allows a pro-
cess to engage in a step of a synchronous composition in a
“silent” fashion. He goes on to point out that if the pro-
cesses in a composition can idle repeatedly, the synchronous
composition mimics asynchronicity, as a constantly idling
process effectively disengages allowing others to proceed in-
dependently. Using this idea Milner builds an asynchronous
calculus, ASCCS, from SCCS and goes on to show that
it is possible to encode the original (asynchronous) CCS
within ASCCS. Perhaps because this suggests that asyn-
chronous composition is “more general”, as it can be re-
garded as equivalent to a synchronous model relaxed to al-
low idling; but more particularly because the study of dis-
tributed, and therefore necessarily asynchronous, software
has provided the prime focus and motivation for research
using process algebras, a consensus in the process algebra
community has solidified around accepting the primacy of
asynchronous semantics, which has become a de-facto stan-
dard.

5.3 Adding Data to Process Algebra
Most authors of process algebra have attempted to aug-

ment their action based semantic foundations with a facility
to model data and the interaction between data and behav-
ior. Different authors have taken different approaches and
Table 1 shows three examples. All start from the assumption
of asynchronous semantics. However this assumption makes
it hard or impossible to add a useful concept of shared or
global data, allowing the way data interacts with behavior
to be modeled. Looking at the three examples in Table 1:

‚ In the CSP approach, one process cannot use a value
set by another, so data must be completely local and
not shared across composed processes. CSP therefore
has no notion of shared data and the only means for
passing data between composed processes is via mes-
sages. The CSP conditional operator construct could
not therefore be used to model the example in Figure 3
as R could not base its behavior on changes of state
within P or Q.

‚ The ACP approach has a concept of shared data in its
guard construct. However all possible combinations of
data values that could occur in any execution of the
composed processes must be allowed. If we apply this
to the example in Figure 3 we have to assume that R
could see any combination of tA, not Au ˆ tB, not Bu,
and in particular the combination A and B. This is not
strong enough to preclude the action z in Figure 3, nor
to specify the constraint on withdrawals required in the
banking example.

‚ In the LOTOS plus global data approach, transactions
can be used to coerce the underlying asynchronous lan-
guage into behaving synchronously. This results in a
hybrid synchronous/asynchronous language whose se-
mantics has no simple mathematical denotation and
has significant limits to its expressive power. The
model in Figure 3 could not be represented, as the
language prohibits composition of two processes with
a common action where the enabling condition of the
action in one is altered by the update function of the
same action in the other, as is the case with action x
in P and R.

The challenge of adding a useful of concept of shared data
to an asynchronous model can be further illustrated by con-
sidering a small amendment to the model in Figure 3, as
follows. Suppose that instead of a single x message, P re-
ceives a stream of x messages and cycles between states A

and A’; and Q similarly receives a stream of y messages and
cycles between B and B’. With asynchronous semantics it
could be that, whenever R tries to establish its own state by
obtaining the states of P and Q, either P is incoherent (in
transit between A and A’) or Q is incoherent, or both. In this
case R’s state could be permanently incoherent, and so the
behavior of S is permanently undefined. We could escape
this problem by supposing that if R seeks the state of P it
obtains the last coherent state that pertained in P , even if
P has now moved on from that state (and similarly for Q).
As noted above in the context if ACP’s guarded commands,
which exhibit the same difficulty, this is too weak to enable
useful specification of behavior such as that in the banking
example introduced earlier.

These examples help explain why, as noted in Section 4,
Baeten et al. eschew global variables in favor of message
passing, and why mCRL2 provides no means for composed
processes to share data.

5.4 Synchronous Composition Revisited
The picture changes if the use of globally shared data is

considered in the context of synchronous rather than, as
above, asynchronous composition. With inter-process ac-
cess allowed (as R accesses the states of P and Q in Figure 3)
whether a composed process is mimicking independence with
silent idle steps or is truly asynchronous becomes substan-
tive, as the former affords synchronization points where co-
herent data or state may be read from another process and
the latter does not. For this reason we think that syn-
chronous and asynchronous composition be recognized as
two different paradigms of composition, with:

‚ The asynchronous paradigm based on true autonomy,
not supporting shared data (so data is exchanged by
message passing).

‚ The synchronous paradigm based on stepwise synch-
ronicity, allowing data be shared to support rich inter-
action between data and behavior in a direct fashion.

Both paradigms of composition admit clean mathematical
denotation (discussion of the formal semantics is beyond the
scope of this paper); and we argue in the next section that
both have a role to play in design and verification of software,
but that these roles are different.

6. THE ROLES OF MODELING
One might expect that the two compositional paradigms

are both useful, but in different contexts. We now argue this
case, and the key determinant of which is appropriate is the
source of the parallelism that motivates the use of composi-
tion. There are two drivers for the use of composition in the
description or specification of software: parallelism that de-
rives from the implementation and parallelism that derives
from the problem.4 These are essentially independent, in
that a given software system may entail either one, neither
or both. We look at each in turn.

6.1 Parallelism in the Implementation
Here we are concerned with software that is to be dis-

tributed across multiple processors/threads. Such distribu-
tion may be needed for reasons of performance, fault toler-
ance, or to meet physical distribution requirements. In this
case separate definition of the distributed parts is essential,
as each processor/thread has to be given an autonomous
source of behavioral instruction to obey. The composition
results from the parallel execution of the parts and their
interaction using message passing and/or access to shared
memory.

Because the processors/threads used for implementation
are conceptually asynchronous, it is clear that asynchronous
composition is the applicable paradigm. As expected, this
is the domain where languages based on asynchronous se-
mantics are strong. The typical use of languages such as

4Some authors refer to the distinction as physical versus
logical concurrency. See, for instance, Halbwachs [11].

mCRL2 is to analyze the behavior of distributed systems, to
ensure that the concurrency does not allow behaviors that
are not expected or are pathological (such as error or dead-
lock). This is done by using analysis tools that generate,
and selectively or exhaustively explore, the state space of
the behavior.

6.2 Parallelism in the Problem
Here we are concerned with problems that lend themselves

to description using composition, whether the implementa-
tion will be distributed or not. Two notable cases are:

‚ The software concerns an external domain populated
by independent but interconnected entities. Such ap-
plications are based on an object model, and the soft-
ware instantiates objects that represent (are analogues
for) the real world entities which the application is re-
quired to track and control.5

‚ The software models the state and progress of a busi-
ness process which, because different activities within
the overall process can be undertaken in parallel by
different parties, is naturally represented using a com-
position of parallel streams.

The concern here is to construct a model which captures
the behavioral requirement; where the requirement reflects
what the system is about and what it has to do and is not con-
cerned (in general) with how it is to be implemented. More-
over, the concern is to achieve a description that achieves
the greatest possible clarity and simplicity, to maximize as-
surance that the software built to realize the behavior is fit
for the purpose for which it is intended and can be easily
amended as requirements change. Generally speaking, the
development of a model that represents behavioral require-
ments will be iterative and incremental. It is important that
the medium used for modeling supports the process, and in
this regard the following are key:

Reasoning.
It should be easy to reason about the the behavior of the

model. Once intellectual control over a model is lost, so is
the assurance of its correctness as a representation of the
requirements. Reasoning about a synchronous model is gen-
erally much easier than reasoning about an asynchronous
model, for the obvious reason that it is not necessary to
think about the possibility of multiple events happening at
the same time. Good encapsulation of behavior helps too, as
without it the specification of the protocol of an entity (the
rules that determine when actions for that entity are pos-
sible and when they are not) becomes distributed through
the model, so cannot be understood just from the model of
that entity.

Evolution.
It should be easy to add features to and remove features

from the model. It is generally easier to evolve models that
are non-redundant (built to the DRY principle) as such mod-
els tend to have lower coupling between their parts. This
is because, in a redundant model, the machinery required

5Jackson uses the term analogic model for a software model
that shadows a domain in this way. See his book Problem
Frames [10].

to maintain consistency generally creates coupling. For in-
stance, functionality to allow transfers of funds between ac-
counts is easier in the Protocol Model of the bank, as there
is no need to consider any changes at the customer level as-
sociated with maintenance of a total balance.

Refactoring.
As a model evolves so its structure and clarity tend to

degrade and need to be re-established by refactoring. This
is much easier with synchronous semantics. Suppose that a
behavioral machine M is refactored into M 1 ‖ M2 because
the behavior is more clearly represented this way. If the ‖
operator is assumed to have asynchronous semantics then
we would have to manage any data access between M 1 and
M2 using messages passed between the two. This mitigates
against the factorizing of complex behavior into a composi-
tion of simple parts, or of rearranging such a factorization
once made, which is normally key to successful refactoring.

Simplicity.
The simplest solution is to be preferred where it meets the

requirements. As synchronous behavior is a special case of
asynchronous, it is always the case that the simplest solu-
tion will be one that works in a synchronous context.

These arguments contribute to a convincing case that syn-
chronous language semantics are best able to support the
processes involved in creating models to represent problem
driven parallelism.

6.3 Parallelism in Both
The forgoing discussion suggests that we need to separate

the two concerns of problem and implementation driven par-
allelism, and use different modeling languages, with differ-
ent compositional semantics, for each. But a problem of any
scale and complexity is going to have both, and this presents
the question: How do we use two languages in combination
to address the two concerns? Full discussion of this is beyond
the scope of this paper, but some ideas are given below.

Suppose that we are starting from a synchronous model
that captures the required behavior (including its problem
driven parallelism), and is known to be behaviorally cor-
rect. To achieve a correct implementation one or more of
the following techniques might be used:

‚ Use a design technique that is known, through formal
reasoning, to preserve behavior when a synchronous
design is mapped to an asynchronous implementation.
An example is the use of end point projection to obtain
behavior definitions for the participants in an asyn-
chronous collaboration as described in choreography
theory, for instance by the author in [2].

‚ Use techniques, such as database locking and sema-
phores, that allow synchronous behavior to be pro-
tected (and thus preserved) in a distributed implemen-
tation and thereby ensure that the behavior of the syn-
chronous model is not broken. For instance, it would
be possible to achieve a correct implementation of the
Protocol Model of the banking example by making any
account transaction (event) subject to a lock placed at
the customer level, thereby serializing the events on a
given customer.

‚ Use an implementation technique that supports syn-
chronous parallelism but does not employ distribution,
for instance by using a synchronous reactive language
such as Esterel [6].

‚ Use standardized patterns for handling concurrency in
a distributed system, for example the optimistic con-
currency pattern used to handle multi-user concur-
rency in on-line transactional systems.

Where a synchronous behavior model is not available, or
a synchronous model has been mapped to distributed imple-
mentation in a way that is not guaranteed to preserve be-
havior, we move into the domain that is addressed by asyn-
chronous languages modeling languages such as mCRL2.
This is the case, for instance, where a GALS (globally asyn-
chronous, locally synchronous) style implementation is used,
as described by Potop-Butucaru and Caillaud [5].

7. CONCLUSION
The main points of this paper can be summarized as fol-

lows:

1. There are two distinct kinds of compositional paradigm:
synchronous and asynchronous. This distinction be-
comes formally apparent when considering the han-
dling of shared or global data in the context of compo-
sition.

2. There is no sensible way to define the handling of
shared or global data in the context of the asynchronous
paradigm. Message passing is the only well defined
way for asynchronous components to exchange data.

3. On the other hand, shared data can be modeled in the
synchronous paradigm. This enables compositional
modeling of the interaction of data and behavior in
a way that is compatible with good practice principles
of software engineering: observing behavioral encapsu-
lation and avoiding redundancy of stored information.

4. Both paradigms have their use and place in systems
engineering:

‚ Synchronous for the modeling of problem driven
parallelism, and

‚ Asynchronous for the modeling of implementation
driven parallelism (distribution).

We think it is a mistake to hold that “one compositional
paradigm fits all”. Instead, both paradigms should be ac-
corded recognition, and the software engineer should choose
the one best aligned to the problem at hand. This will en-
able us to avoid the methodological equivalent of trying to
force a screw into a piece of wood with a hammer.

References
[1] A. Khoumsi and G. von Bochmann. Protocol Synthe-

sis using Basic Lotos and Global Variables. In ICNP
’95: Proceedings of the 1995 International Conference
on Network Protocols, pages 126–133. IEEE Computer
Society, 1995. ISBN 0-8186-7216-1.

[2] A. McNeile. Protocol Contracts with Application to
Choreographed Multiparty Collaborations. Service Ori-
ented Computing and Applications, 4(2):109–136, June
2010. ISSN 1863-2386. doi: 10.1007/s11761-010-0060-9.

[3] A. McNeile and N. Simons. Protocol Mod-
elling: A Modelling Approach that supports Reusable
Behavioural Abstractions. Journal of Software
and System Modeling, 5(1):91–107, 2006. doi:
http://dx.doi.org/10.1007/s10270-005-0100-7.

[4] C. Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

[5] D. Potop-Butucaru and B. Caillaud. Correct-by-
Construction Asynchronous Implementation of Modu-
lar Synchronous Specifications. Fundam. Inf., 78:131–
159, January 2007. ISSN 0169-2968.

[6] G. Berry. The foundations of Esterel. In Proof, lan-
guage, and interaction: essays in honour of Robin Mil-
ner, pages 425–454, Cambridge, MA, USA, 2000. MIT
Press. ISBN 0-262-16188-5.

[7] J. Baeten, T. Basten and M. Reniers. Process Alge-
bra: Equational Theories of Communicating Processes.
Cambridge University Press, New York, NY, USA,
2009. ISBN 0521820499, 9780521820493.

[8] J. Bergstra and J. Klop. Process Algebra for Commu-
nication and Mutual Exclusion. Technical report, CS-
R8409. Centrum voor Wiskunde en Informatica, Ams-
terdam, The Netherlands, 1984.

[9] J. Bergstra, J. Klop and J. Tucker. Process Algebra
with Asynchronous Communication Mechanisms. In
Seminar on Concurrency, Carnegie-Mellon University,
pages 76–95, 1985. ISBN 3-540-15670-4.

[10] M. Jackson. Problem frames: Analyzing and Structur-
ing Software Development Problems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.
ISBN 0-201-59627-X.

[11] N. Halbwachs. Synchronous Programming of Reactive
Systems - A Tutorial and Commented Bibliography. In
In Tenth International Conference on Computer-Aided
Verification, CAV’98, Vancouver (B.C.), LNCS 1427,
pages 1–16. Springer Verlag, 1998.

[12] R. Milner. Calculi for Synchrony and Asynchrony. The-
oretical Computer Science, 25(3):267 – 310, 1983. ISSN
0304-3975. doi: DOI: 10.1016/0304-3975(83)90114-7.

