
Adaptive to change? Compositional modelling

of Healthcare Insurances using Protocol

Modelling

Reducing the impact of coverage changes

Author

Student Number

Date

Jaco Verheul

835971801

13 September 2011

2

3

Open Universiteit Nederland, faculteiten Managementwetenschappen en Informatica

Masteropleiding Business Process Management and IT

Course Code T89317 Afstudeertraject Business Process Management and IT

Author Jaco Verheul

Student Number 835971801

Date 13 September 2011

Graduation Committee

Chair Dr. E.E. Roubtsova

Second Reader Prof. Dr. Ir. Stef Joosten

Supervisor Dr. E.E. Roubtsova

Adaptive to change? Compositional modelling

of Healthcare Insurances using Protocol

Modelling

Reducing the impact of coverage changes

4

Abstract

This report presents the results of research on application of Protocol Modelling in the domain

of healthcare insurance claims processing in the Dutch context.

Protocol Modelling is claimed to enable “Evolvable Behaviour Modelling” (McNeile &

Roubtsova, 2009). The goal of this research is experimental validation of this claim on the

factual material available in the domain of healthcare insurances and identification of

semantic constructs that reduce the impact of changes on a protocol model.

The research method is based on the analysis of the literature on product evolution and

configuration management in general, transactional properties of Protocol Modelling in

particular and application of all findings for building an executable Protocol Model of

healthcare insurance applications. The initial version of the Protocol Models is based on the

requirements of the Base Insurance from 1 January 2006 and then the model is extended with

all changes in the rules of the Base Insurance introduced in the last six years from 2006 to

2011.

Nine use cases are defined that cover most of the functionality of the Base Insurance. All

these changes are exposed to the model. Their impact on the model structure and behaviour is

accessed and classified on the basis of the model structure that clearly reflects the problem

domain.

All the changes fall into four categories:

1. Change in covered care procedures. Changes in covered care procedures occur each

and every year.

Two subclasses are defined:

a. Coverage Added. A care procedure that was uncovered previously, has

become a covered procedure.

b. Coverage Removed: A care procedure that was covered previously, has

become uncovered.

2. Condition Changed: A care procedure that was covered before, is still covered but the

conditions for coverage have become more restrictive or less restrictive.

Changes in conditions occur in most years. Most changes concern changes in age

limits.

3. Change in benefit calculation. The algorithm to calculate the benefit amount of a claim

has changed. Change in benefit calculation happens once: when the mandatory

deductible is introduced in 2008. In later years only the deductible mount is increased.

4. Other Change: Changes that do not belong to one of the three categories above. The

only change of this type is the introduction of a personal budget for visual aids. This is

outside the scope of the model as this change does not impact claims processing.

For each class of the changes, the impact on the model is assessed. All change types can be

implemented by changing the model configuration only, except for the introduction of the

new concept of a mandatory deductible. The initial model is extended to support mandatory

deductibles by adding new behaviours and attributes utilizing the composition semantics of

protocol modelling. Only the ProcessClaim callback code had to be modified, to handle the

additional step of deductable calculation.

The conclusion of this study is that all necessary elements of flexibility for a healthcare

insurance model, namely, flexibility in addition and removal of covered care procedures,

flexibility in conditional coverage and flexible deductible, are supported by the protocol

5

model by such means as Parameterization, User Exits, Composition, Derived Attributes and

States. The first two options can also be achieved by other modelling techniques. The third

option of CSP parallel composition leverages the composition semantics of Protocol

Modelling. Composition, derived states and attributes enable the reuse of model elements.

The semantic constructs of protocol modelling can best be applied in a model of a healthcare

insurance by:

 Using parameterization in the definition of Product, Coverages and Conditions.

 Using User Exists to enable different price- and benefit calculation algorithms per

coverage object.

 Using Composition to include different combinations of conditions in coverage

objects.

 Using derived attributes to abstract over a range of history records, like deductable

consumption.

It is expected that the results of this research also apply to other healthcare insurances as the

developed model has abstracted from the Base Insurance by applying generalization. It might

also apply to other types of insurance that are similar to healthcare insurance.

6

Contents

ABSTRACT .. 4

CONTENTS .. 6

1. INTRODUCTION ... 10

2. BACKGROUND .. 12

3. RESEARCH FRAMEWORK .. 13

3.1. RESEARCH DESIGN .. 14

4. THEORETICAL FRAMEWORK ... 15

4.1. CLASSIFICATION OF OHI NEXT ... 15

4.2. ADAPTATION OF PRODUCT SOFTWARE .. 16

4.2.1. Product Software .. 16
4.2.2. Flexibility ... 16
4.2.3. Adaptation .. 16
4.2.4. Adaptation of OHI Next .. 17

4.3. MODELS AND ADAPTATION OF PRODUCT SOFTWARE ... 18
4.3.1. Models during development and adaptation of product software 18
4.3.2. Models and OHI Next ... 18

4.4. PROTOCOL MODELLING SEMANTICS ... 20
4.4.1. Protocol and event ... 20

4.4.2. Protocol machine ... 20
4.4.3. Object modelling .. 21
4.4.4. Composition ... 21

4.4.5. Derived Attributes and States ... 22

4.4.6. Sub Events .. 23
4.4.7. Actors ... 23
4.4.8. Observations ... 23

4.5. MODELLING ADAPTATION USING PROTOCOL MODELLING .. 24
4.5.1. Parameterization .. 24

4.5.2. User Exits ... 25
4.5.3. Reduce impact of changes .. 26

5. DESIGN PROTOCOL MODEL FOR BASE INSURANCE 2006 27

5.1. REQUIREMENTS ... 27
5.1.1. Actors ... 27

5.1.2. Use Cases ... 29
5.2. ASSUMPTIONS ... 30

5.2.1. Goal of the model ... 30
5.2.2. Abstraction and Parameters ... 30
5.2.3. Reusability .. 30
5.2.4. Time validity support .. 30
5.2.5. Unique keys .. 30

5.2.6. Authorizations .. 31
5.3. ANALYSIS OF BENEFIT RULES ... 31

5.3.1. Products and Coverages .. 31
5.3.2. Conditions .. 31
5.3.3. Benefit Calculation ... 32

7

5.3.4. Mathematical Model of Benefit Rules .. 32
5.3.5. Policies and claims ... 32

5.4. MODEL .. 33
5.4.1. Structure ... 33
5.4.2. Modelling of coverage rules ... 34
5.4.3. Modelling of policies and claims ... 35
5.4.4. Modelling of the application of coverage rules ... 38

5.5. FLEXIBILITY .. 42
5.5.1. Configurable Coverages .. 42
5.5.2. Adding Coverage types ... 43
5.5.3. Steps in the Flow .. 43
5.5.4. Pluggable Price- and Benefit Calculator ... 43

5.6. SUPPORT OF USE CASES ... 43

6. RESULTS AND ANALYSIS .. 44

6.1. OVERVIEW AND CLASSIFICATION OF CHANGES ... 44
6.2. IMPACT OF CHANGES ON MODEL .. 45

6.2.1. Impact of Change Type “Coverage Added” .. 46
6.2.2. Impact of Change Type “Coverage Removed” .. 46

6.2.3. Impact of Change Type “Condition Changed”.. 46
6.2.4. Impact of Change Type “Change in Benefit Calculation” 46

6.2.5. Impact of Change Type “Other Change” .. 46
6.3. SUMMARY OF RESULTS ... 46

7. MODEL ENHANCEMENTS ... 48

7.1. ANALYSIS OF MANDATORY DEDUCTIBLE ... 48
7.1.1. Combination with Co-payment and partly Coverage 48

7.2. IMPLEMENTATION OF MANDATORY DEDUCTIBLE ... 48
7.3. EXTENDED PRODUCT DEFINITION ... 49

7.3.1. Extended Claim processing .. 50
7.4. SUMMARY ... 51

8. CONCLUSIONS AND DISCUSSIONS .. 52

8.1. CONCLUSIONS ... 52
8.1.1. Flexibility needed in a Healthcare Insurance Model 52

8.1.2. Flexibility Support in Protocol Modelling ... 53
8.1.3. Flexibel Protocol Model of Healthcare Insurance .. 53
8.1.4. Impact of changes ... 54

8.2. DISCUSSIONS ... 54
8.2.1. Validity ... 54
8.2.2. General Modelling Techniques .. 55
8.2.3. Guidelines ... 55

8.2.4. Completeness .. 55

9. REFERENCES .. 56

10. APPENDIX 1: USAGE OF MODELS ... 58

11. APPENDIX 2: THE DUTCH BASE INSURANCE (2006) .. 60

11.1. TRANSLATION OF DUTCH TERMINOLOGY .. 63

12. APPENDIX 3: CHANGES IN THE COVERAGE OF THE BASE INSURANCE . 65

12.1. BASE INSURANCE CHANGES IN 2007 ... 65

8

12.1.1. Added Coverage ... 65
12.2. BASE INSURANCE CHANGES IN 2008 ... 65

12.2.1. Added Coverage ... 65
12.2.2. Mandatory Yearly Deductible .. 65

12.3. BASE INSURANCE CHANGES IN 2009 ... 65
12.3.1. Added Coverage ... 66
12.3.2. Reduced Coverage .. 66

12.3.3. Increase of Mandatory Yearly Deductible ... 66
12.4. BASE INSURANCE CHANGES IN 2010 ... 66

12.4.1. Added Coverage ... 66
12.4.2. Removed Coverage ... 66
12.4.3. Increase of Mandatory Yearly Deductible ... 66

12.5. BASE INSURANCE CHANGES IN 2011 ... 66
12.5.1. Reduced Coverage .. 66
12.5.2. Increase of Mandatory Yearly Deductible ... 66

13. APPENDIX 4: EXPLANATION OF GRAPHICAL SYMBOLS 67

14. APPENDIX 5: UML BEHAVIOUR MODELS... 68

14.1. UML TYPES OF BEHAVIOUR MODELS ... 68

14.2. UML STATE MACHINE SEMANTICS .. 68
14.3. UML STATE MACHINES AND TRANSACTIONS ... 69

15. APPENDIX 6: MODEL REFERENCE ... 71

15.1. BEHAVIOUR AGECONDITION ... 71
15.2. BEHAVIOUR AGELIMIT ... 71

15.3. BEHAVIOUR BENEFIT .. 71
15.4. BEHAVIOUR BENEFITCOPAYMENT .. 71

15.5. BEHAVIOUR BENEFITFULL .. 71

15.6. BEHAVIOUR BENEFITPERCENTAGE ... 71

15.7. OBJECT CAREPROCEDURE ... 72
15.8. BEHAVIOUR CAREPROCEDURECONDITION ... 72

15.9. BEHAVIOUR CAREPROCEDUREGROUP .. 72

15.10. OBJECT CAREPROCEDUREGROUPMEMBER ... 72
15.11. OBJECT CLAIM .. 72

15.12. BEHAVIOUR COPAYMENT ... 73
15.13. BEHAVIOUR COVERAGE .. 73
15.14. OBJECT COVERAGEAGE .. 73

15.15. OBJECT COVERAGECOPAYMENT .. 73
15.16. OBJECT COVERAGEFULL ... 73
15.17. OBJECT COVERAGEMAXIMUMNUMBER .. 74
15.18. OBJECT COVERAGEMAXIMUMNUMBERCOPAYMENT ... 74

15.19. OBJECT COVERAGEPERCENTAGE .. 74
15.20. OBJECT COVERAGETREATMENT ... 74
15.21. FIXEDPRICE ... 75

15.22. BEHAVIOUR MAXIMUMNUMBERCONDITION .. 75
15.23. BEHAVIOUR MAXIMUMNUMBERLIMIT ... 75

15.24. OBJECT PERSON .. 75
15.25. OBJECT POLICY ... 75
15.26. BEHAVIOUR POLICYCOVERAGE .. 75
15.27. OBJECT POLICYCOVERAGEAGE .. 76
15.28. OBJECT POLICYCOVERAGECOPAYMENT .. 76

9

15.29. OBJECT POLICYCOVERAGEFULL ... 76
15.30. OBJECT POLICYCOVERAGEMAXIMUMNUMBER .. 76

15.31. OBJECT POLICYCOVERAGEMAXIMUMNUMBERCOPAYMENT 76
15.32. OBJECT POLICYCOVERAGEPERCENTAGE .. 76
15.33. OBJECT POLICYCOVERAGETREATMENT.. 76
15.34. OBJECT PRODUCT .. 76
15.35. BEHAVIOUR TREATMENTCONDITION .. 76

16. APPENDIX 7: USE CASES .. 78

16.1. BASIC SETUP.. 78
16.1.1. Product ... 78
16.1.2. Persons ... 78

16.2. USE CASE 1: NOT COVERED (ALTERNATIVE MEDICINE) ... 79

16.2.1. Create Policy .. 79
16.2.2. Submit claim ... 79

16.3. USE CASE 2: COVERED 100% (GENERAL PRACTITIONER CARE) 81
16.3.1. Coverage .. 81
16.3.2. Create Policy .. 81
16.3.3. Submit claim ... 82

16.4. USE CASE 3: COVERED 100% WITH AGE LIMIT (DENTAL CARE) 83
16.4.1. Coverage .. 83

16.4.2. Create Policy .. 84
16.4.3. Submit Claim .. 84

16.5. USE CASE 4: COVERED 100% UP TO MAXIMUM NUMBER (NUTRITIONAL

COUNSELLING) .. 85
16.5.1. Coverage .. 85

16.5.2. Create Policy .. 86
16.5.3. Submit claim ... 86

16.6. USE CASE 5: COVER WITH COPAYMENT (INPATIENT DELIVERY) 87

16.6.1. Coverage .. 87

16.6.2. Create Policy .. 88
16.6.3. Submit claim ... 88

16.7. USE CASE 6: COVERAGE OF TREATMENT (PHYSIOTHERAPY) 89

16.7.1. Coverage .. 89
16.7.2. Create Policy .. 90
16.7.3. Submit Claim .. 90

16.8. USE CASE 7: COVER TO MAXIMUM NUMBER OF UNITS WITH COPAYMENT

(MATERNITY CARE) ... 91

16.8.1. Coverage .. 91
16.8.2. Create Policy .. 92
16.8.3. Submit claim ... 92

16.9. USE CASE 8: COVER SPECIFIC TREATMENTS (IVF) .. 92

16.10. USE CASE 9: COVER PARTLY (PROSTHESES) .. 93

16.10.1. Coverage .. 93
16.10.2. Create Policy .. 94

16.10.3. Submit claim ... 94

10

1. Introduction

This report presents the results of research on the application of Protocol Modelling in the

domain of healthcare insurances in the Dutch context. The developed model supports the

processing of submitted healthcare insurance claims.

Protocol Modelling is claimed to enable “Evolvable Behaviour Modelling” (McNeile &

Roubtsova, 2009). The goal of this research is to validate this claim in the domain of

healthcare insurances.

An evolvable model of healthcare claims processing must be able to cope with different

changes:

 Changes in coverage of healthcare costs. These changes are often prescribed by law.

 Differences between customers. This is especially true when modelling the behaviour

of an application sold as a product. The application and hence also the model, must be

flexible enough to handle differences between customers.

Therefore the research concentrates on the semantic constructs that reduce the impact of

changes on a model of healthcare claims processing.

The research question is:

Which semantic constructs reduce the impact of changes on a protocol model of a healthcare

insurance?

This research question is detailed in the following sub questions:

1. Which flexibility is needed for a healthcare insurance model? In other words: which

types of changes occur in the healthcare insurance domain?

2. Which semantic constructs of Protocol Modelling support the needed flexibility?

3. How can the semantic construct best be applied?

The research has the form of a case-study:

 After describing the theoretical framework, a model of the Base Insurance as of 1

January 2006 is created. At that time, the Base Insurance started in the Netherlands.

 After creating the model, all changes in the rules of the Base Insurance since 2006

until and including 2011 are exposed to the model. Their impact is assessed and

classified.

 The results of this assessment are discussed. The initial model is enhanced with

necessary structural changes. In the concluding chapter, the research questions are

answered.

The Dutch Base Insurance (Basisverzekering) is taken as a use case because many of the

customers of Oracle Health Insurance are in the Netherlands. Also the rules of the Base

Insurance are clearly defined. All Dutch inhabitants are required to enrol into the Base

Insurance.

The report is constructed as follows:

1. Chapter 2 “Background” presents some background information.

2. Chapter 3 “Research Framework” describes the actions taken to answer the research

question. It also presents the phases of the research project and the research design.

3. Chapter 4 “Theoretical Framework” presents the results of the literature review. On

the one hand it outlines the flexibility needed for product software and explains why

this flexibility is also needed in a model of a software product. On the other hand, the

semantics of Protocol Modelling are reviewed. The last section shows how the

required flexibility can be constructed using Protocol Modelling.

11

4. Chapter 5 “Design Protocol Model for Base Insurance 2006” uses the result of the

literature review to create an initial model for the Base Insurance as of 1 January 2006.

5. Chapter 6 “Results and analysis” classifies all changes in the rules of the Base

Insurance since 2006. The impact of all change types is determined and assessed.

6. Chapter 7 “Model Enhancements” extends the initial model with the support of a

Mandatory Deductible as introduced in 2008. The impact of this structural change on

existing elements of the initial model is described.

7. Chapter 8 “Conclusions and Discussions” presents conclusions and answers the

research questions. The validity of the results is discussed. Suggestions for additional

research are presented.

12

2. Background

The Oracle Health Insurance (OHI) division currently develops a new application to process

healthcare insurance claims. This application is called OHI Next.

OHI Next is a replacement of an existing 20-year old application with the following

characteristics:

1. Originally developed with a rule-based architecture to support several regional

healthcare insurance companies. Lots of configuration changes can be made by setting

parameters. This allows for differences between customers and law changes.

2. Developed and sold as a product. Does not contain customer specific modules.

3. Developed as a monolith.

4. Starting from 2006, multilingual and multi-country support has been added to the

application. Since then, the first customers abroad have implemented the application

successfully.

Typical for the domain of healthcare insurances is the large influence of the law. These laws

differ substantially between countries. This restricts the number of countries the existing

application can serve: only the countries for which the healthcare systems are more or less

similar to the Dutch system.

The wish to have customers in major markets like US, Germany and France is one of the

drivers to develop the new application.

In the remainder of the research, the development of the new application does not play a role

anymore, nor are the results of this research used for or dependent on the development of the

new application.

The initial release of the new application only supports the United States market, whereas the

developed model is for the Dutch Base Insurance.

Only chapter 4 outlines which roles a model could play during the development and

implementation of product software.

The author is a member of the development team of OHI Next.

13

3. Research Framework

This chapter describes the actions taken to answer the research questions. The research

framework is shown in figure 1. The arrows show how the results of an action are used in

subsequent actions.

Figure 1 Research Framework

The actions are executed in four phases:

a) “Literature Review” contains five actions. Each action is described in its own section

in chapter 4 “Theoretical Framework”.

a. Classification of the OHI Next application. Determines the characteristics of

the class of applications OHI Next belongs to.

b. Adaptation of Product Software. Describes various options to make software

products adaptable.

c. Models and Adaptation of Product Software. Describes the role of models

during development and adaptation of product software

d. Protocol Modelling Semantics. Gives a summary of the semantics of Protocol

Modelling.

e. Modelling Adaptation using Protocol Modelling. Shows how techniques from

Adaptation of Product Software can be implemented using Protocol Modelling.

b) “Design Protocol Model”. A model of the Dutch Base Insurance (Basisverzekering) is

constructed. The Base Insurance was introduced in the Netherlands in 2006. So the

constructed model reflects the rules as they were at 1 January 2006. The model is

described in detail in chapter 5 “Design Protocol Model for Base Insurance 2006”.

14

c) “Assess Impact of Changes”. Yearly, the rules of the Base Insurance change. In this

phase, all changes from 2007 until 2011 are classified. Their impact on the model is

assessed. The results of the assessment are described in chapter 6 “Results and

analysis”.

d) “Results”. The results of c) are used to enhance the model and to give an answer to the

research questions. See chapters 7 “Model Enhancements” and 8 “Conclusions and

Discussions”.

3.1. Research Design

The research has the form of a case study: only the Dutch Base Insurance is studied. This is

caused by the explorative nature of the research:

 No reference models of the healthcare insurance domain were found.

 No guidelines exist how to achieve flexible and adaptable protocol models, even

though some papers talk about evolvable models (McNeile & Roubtsova, 2009).

The Base Insurance is a healthcare insurance for which the coverage is prescribed by Dutch

law. All inhabitants of the Netherlands are required to enrol for the Base Insurance.

The situation of 1 January 2006 is taken as starting point. At that time, the Base Insurance

was first introduced in the Netherlands.

The Base Insurance is taken as a research case because:

 The coverage rules are prescribed by Dutch law and implemented by all insurance

companies in the Netherlands.

 The Base Insurance contains aspects common to other healthcare insurances. It is

expected that results for the Base Insurance will also be valid for other healthcare

insurances.

 The coverage rules of the Base Insurance are publicly available on the Internet,

including all changes from 2007 until 2011. So using the Base Insurance as a case

saves analysis time.

15

4. Theoretical Framework

This chapter presents the results of the literature review. Each section covers one of the

actions shown in chapter 3 “Figure 1 Research Framework”

4.1. Classification of OHI Next

This section classifies the OHI Next application to get insight in its characteristics.

Milicev (Milicev, 2009) gives the following definition of Information Systems (IS):

An information system is a computer-based system primarily dealing with large amounts of

data that are structured, stored, transferred, processed, and presented ... to accomplish a

specific purpose for the users.

According to this definition, OHI Next is an Information System. Milicev gives

characteristics of Information Systems, divided in three categories:

1. Domain related:

a. Inherent complex functionality.

b. IS concepts based on domain concepts.

c. Instantiation of large number of objects.

d. Evolution of functionality.

2. Usability:

a. Interactive

b. Gives relevant information at correct time and place

c. Security.

d. Ease of use.

3. Deployment related:

a. Large amounts of data of different type.

b. Scalable.

c. Persistent.

d. Concurrent access.

e. Distributed processing.

All these characteristics apply to OHI Next.

Wortmann and Kusters define Enterprise Information Systems (EIS) as:

An Enterprise Information System is an information system which supports human activities

in organisations, even if these activities are performed by stakeholders outside the traditional

organisational boundaries.

An EIS gives users the following capabilities:

1. Storage of data and mutations.

2. Functionality suited to their jobs.

3. User support, so that a user can use the functionality.

4. Authorisation.

Al these characteristics also apply to OHI Next.

Enterprise Resource Planning (ERP) systems are a subclass of EIS. According to Wortmann

and Kusters, ERP systems are increasingly positioned as “transaction processing backbones”.

This is exactly the role of OHI Next: processing claims that are delivered electronically or on

paper.

Information Systems for businesses are called Business Information System.

Roubtsova, Wedemeijer, Lemmen and McNeile (2009) define Service Providing Business

Processes (SPBP) as:

16

A Service Providing Business Process (SPBP) is an interactive process that transforms the

requests of users and the information presented in rules, law regulations or databases of

official organizations into a physical product or a document.

Based on the information present in the rules, a SPBP can accept or refuse a request. This is

exactly what OHI Next does: a submitted claim is either paid (partly) or rejected. In our case,

the rules are the rules of the Base Insurance:

To summarize:

 OHI Next is an Information System.

 OHI Next is an Enterprise Information System that functions as a transaction

processing backbone.

 OHI Next supports Service Providing Business Processes.

4.2. Adaptation of Product Software

OHI Next is sold as a standard application to different healthcare insurance companies

worldwide. The application has not been developed for a specific customer, but for a market.

Being a standard application for a worldwide market, gives additional requirements. Those

requirements are described in this section.

1. Section “Product Software” gives a definition of product software.

2. Section “Flexibility” describes which flexibility is needed.

3. Section “Adaptation” describes terminology and classifications dealing with

adaptation of product software.

4. Section “Adaptation of OHI Next” relates the previous sections to the case.

4.2.1. Product Software

In accordance to Xu and Brinkkemper (Xu & Brinkkemper, 2005), instead of standard

application the term product software is used with the following definition:

“A software product is defined as a packaged configuration of software components or a

software-based service, with auxiliary materials, which is released for and traded in a

specific market”.

The term product indicates the difference with custom software.

4.2.2. Flexibility

Product software will be used by different customers. An important aspect of product

software is therefore how and to which extends differences between customers are supported.

It is not likely that business processes will execute exactly identical at different customers. So

the product needs to be adapted to the situation for a specific customer.

The product should also be able to handle changes caused by the passing of time. For

healthcare insurances, these changes often have to do with changes in the law.

So an important requirement is flexibility: the ability to adapt the product to different and

changing circumstances.

4.2.3. Adaptation

Adaptation of product software is described in the literature with different terminology.

Authors also differ in their classification of adaptation possibilities. See the table below.

Note: classifications of adaptation in the literature often refer to Enterprise Resource Planning

(ERP) applications. ERP applications form an important subcategory of application software,

for which much research is done. The results of the research to application adaptation also

apply to OHI Next.

17

Table 1 Adaptation of product software: classification and terminology

Author Terminology

(Carney, 1997). Carney talks about adaptation and describes the use of glue code,

wrappers and bridges to wire components together.

(Morisio & Torchiani,

2002)

Morisio and Torchiano talk about customization and give the

following classification:

 Adapt program code.

 Program using a set of delivered API‟s and a scripting language.

 Defining macros.

 Parameterization.

(Ahituv, Neumann &

Zviran, 2002).

Ahituv, Neumann and Zivran indicate that flexibility is an important

aspect of ERP systems. They define four ways to achieve flexibility:

 Setting of parameters.

 Changing program source

 Adding modules

 Connectivity to other systems.

Flexibility according to them can give companies competitive

advantage, by defining a unique customization of an ERP system.

(Yang, Bhuta,

Boehm & Port, 2005)

Yang, Bhuta, Boehm and Port describe tailoring options:

 GUI operation

 Setting of parameters.

 Programming of scripts.

(Brehm, Heinzl &

Markus, 2000)

Brehm, Heinzl and Markus give the following overview of ERP

tailoring options:

 Configuration: setting of parameters and control data.

 Bolt-ons: A predefined ERP configuration for a particular

industry.

 Screen masks: new entry screens

 Extended reporting: extra data output possibilities

 Workflow programming: Create different workflows.

 User exits: Program extensions using a predefined interface.

 ERP programming: adding new modules using the ERP systems

programming language.

 Interface development: programming interfaces with other

systems.

 Package code modification: Change the ERP source code itself.

The options are given in ascending order of „impact‟: how much is

the system changed and how much effort is needed?

To summarize:

 Flexibility can be built into a software component in multiple ways.

 The classification of Brehm, Heinzl and Markus is the most elaborate.

4.2.4. Adaptation of OHI Next

OHI Next uses a number of adaptation possibilities (classified according to Brehm, Heinzl

and Markus):

 Configuration: setting of parameters and control data. This option is used extensively

and forms the basis of OHI Next‟s flexibility. Coverage rules can be freely defined

and supplied with parameters.

18

 User exits: at certain fixed locations in the system, a piece of custom logic can be

called. Custom logic has a predefined interface (input/output definition). Custom logic

is used in situations to that are too specific to create configurable parameters for it. An

example is the matching of a claim to a required authorization. Customers do this in

very different ways. They can implement their algorithm in a piece of custom logic.

4.3. Models and Adaptation of Product Software

This section describes the role of models during development and adaptation of product

software.

1. Section “Models during development and adaptation of product software”

concentrates on the usage of models in combination with the development and

adaptation of product software.

2. Section “Models and OHI Next” draws conclusions and relates the findings to the

case.

More generic background information about the usage of models can be found in Appendix 1:

Usage of Models”.

4.3.1. Models during development and adaptation of product software

In relationship with product software, models can be viewed from two perspectives:

1. From the perspective of the supplier.

2. From the perspective of the customer using the product.

4.3.1.1. Supplier Perspective

Also in the development of product software one can use models, model-driven prototyping

and model-driven engineering.

Product software differs from custom software by a greater degree of flexibility. An

executable model of product software therefore also needs to have a greater degree of

flexibility. In other words: the adaptation capabilities of the software must also exist in the

executable model.

4.3.1.2. Customer perspective

Wortmann and Kusters describe the use of enterprise models. According to them, these

models also play a role in the selection, implementation and use of enterprise information

systems (EIS). The comparison of enterprise models with models of an EIS assists in the

selection of a suitable package.

It is therefore important that the supplier of the EIS provide models. That often comes in the

form of a reference model. A reference model describes the processes and structure of an EIS

and is a description of best practices. A reference model also documents the total functionality

of an EIS.

During implementation, the real world must be modelled in the language of the EIS. The

implementation decisions taken should be recorded (documentation) and communicated to

stakeholders.

4.3.2. Models and OHI Next

This section relates the information of the preceding sections to the case. The development of

applications within OHI is partly financed by a launching customer. This launching customer

had to be found at the time that the software does not yet exist. Currently, the sales process

makes use of electronic presentation material in combination with demonstrations using the

old system (with a different structure).

An executable model helps to visualize a new application to customers.

19

Within OHI, applications are designed by functional analysts. They discuss the requirements

with customers and store them in designs. The analysts have very detailed functional

knowledge. Construction and technical design is done by Java developers, without functional

knowledge.

The transfer of specifications of analysts to developers will benefit from an executable model.

The developers can use this model while constructing the software.

The design is delivered electronically to the launching customer for approval in the form of a

structural model with textual explanation. It is noticed that representatives of the customer

need much additional explanation before they can understand a delivered design. This leads to

major delays in the approval process.

An executable model helps explaining designs to users.

During the sales cycle of OHI applications to new customers, often a fit-gap analysis is

executed: where fits the software with the requirements, and where is a gap encountered?

An executable model supports to discover and resolve gaps.

The characteristics of OHI are comparable to the characteristics of plan-driven development:

 The requirements are relatively stable.

 The team is big (30+).

 High reliability is required. Errors in the application have direct financial implications.

OHI certainly suffers from a very large problem-implementation gap: the functionality is very

complex. The technical architecture uses a unique combination of techniques that exists

almost nowhere in the world.

Taking into account the preferences of the current development team, Model-Driven

Development is a bridge too far. Model-Driven prototyping with the main goal to improve

communication internally and externally is more realistic.

The executable model (prototype) must have the same adaptation possibilities as the product

to be developed.

For OHI Next this means:

 Configuration: Changing parameters and control data.

 User exits: define a piece of custom logic to be called from fixed places in the

application.

20

4.4. Protocol Modelling Semantics

This section presents a summary of the semantics of protocol modelling. Aspects used for the

construction of the model are emphasized. The information in this chapter is based on

(McNeile and Roubtsova, 2009) and (McNeile and Simons, 2006). More background

information can be found in these documents.

Protocol modelling concepts are explained using examples of the insurance domain. See

“Appendix 4: Explanation of graphical symbols” for an explanation of the symbols used in

diagrams.

Protocol Modelling already was in use in the research community, so it was the preferred

choice when starting this research. A complete comparison of Protocol Modelling semantics

with UML State Machine semantics is outside the scope of this research project, but

“Appendix 5: UML Behaviour Models” explains why Protocol Machines are better suited

than UML state machines to describe the behaviour of Business Information Systems.

4.4.1. Protocol and event

The meaning of protocol in protocol modelling is comparable to the meaning in UML

Protocol State Machines (PSM) (OMG (2009-2). UML PSM‟s model the allowed sequences

of operations.

Protocol modelling supports the modelling of allowed sequences of events.

For example:

 Event “Submit Claim” is only possible after the event “Create Policy”.

 At most four events “Claim hour Nutritional Counselling” are allowed during the

lifetime of a policy. (The Base Insurance only covers four hours of Nutritional

Counselling).

So a protocol defines the set of all possible allowed sequences of events.

Definition of event
1
:

An “event” is the data representation of an occurrence of interest in the real world business

domain.

(McNeile and Simons, 2006).

An event has attributes and values. For example, the event “Create Policy” contains attributes

Person, Product, Policy Number and Start Date. An attribute is either a reference attribute

(like Person), or a value attribute (like Policy Number). A reference attribute refers to another

object
2
. A value attribute has a scalar value like a String or Date.

4.4.2. Protocol machine

Protocol modelling uses state transitions machines, protocol machine or machine for short.

The behaviour of a protocol machine is defined as follows:

 A protocol machine has an alphabet: the set of events that the machine “understands”.

 Events not in the alphabet are ignored.

 Events in the alphabet are either accepted or refused.

 After the processing of an event, the machine can transition to a new state.

1
 This definition is loosely: the difference between event and event instance is ignored.

2
 More precise: a reference attribute refers to a behaviour. See section “Composition”.

21

See diagram below for a graphical representation of the Person protocol machine.

Figure 2 Protocol Machine Person

 The alphabet of this machine consists of the events Register Person, Change Person,

Create Policy, and Deregister Person.

 Event Submit Claim is not a part of the alphabet, so the machine ignores this event.

 If a person is in the state Registered, the event Deregister Person is accepted. The new

state of the machine will become Deregistered.

 If a person is in the state Deregistered, the event Deregister Person is refused. The

state of the machine will not change.

An event is said to be in context, if the protocol machine is in a state that accepts the event.

4.4.3. Object modelling

In protocol modelling, an object consists of:

 Attributes. A set of attribute names and attribute values. Similar to events, both

reference- and value attributes are possible.

 Behaviour. An object contains one or more protocol machines.

For example:

 The object Person has attributes Name and Date of Birth.

 The object Person contains a protocol machine with states Registered and

Deregistered and the alphabet Register Person, Change Person, Create Policy and

Deregister Person.

As said above, the state of an object can change when an event occurs. An event can also

result in the change of attribute values. Using the ModelScope tool, an attribute change can be

implemented in two ways:

1. If the name of an event attribute matches the name of an object attribute, the object

attribute gets the value of the event attribute. This is called Name Co-incidence Data

Transfer.

2. The event is handled by a Java callback. This is needed for situations where plain

name matching is not sufficient.

4.4.4. Composition

Multiple Protocol Machines can be composed into a Protocol System. A Protocol System is

itself a Protocol Machine with the following behaviour:

 The alphabet of the Protocol System is the union of the alphabets of the composing

machines.

 Events not in the alphabet of the Protocol System are ignored.

22

 Events presented to the Protocol System, are presented to the composing machines.

 Events in the alphabet of the machine are refused if refused by one of the machines.

 In all other cases, the event is accepted.

These characteristics enable composition of behaviour. For example, an insurance company

only wants to deregister a person if all outstanding bills are paid. One can add the Protocol

Machine Debtor to the Person Object. The diagram below shows the definition of the Debtor

machine:

Figure 3 Protocol machine Debtor

The Person object now has a Protocol System composed of the Protocol Machines Person and

Debtor. Debtor will refuse the event Deregister Person if in the state Unpaid. According to the

composition rules, Person will also refuse the event, so deregistering a person is only possible

when the bill is paid.

In protocol modelling, Debtor is called a Behaviour. Similar to an object, a Behaviour has

attributes and behaviour. However, an object can be instantiated itself, whereas a Behaviour is

only instantiated as part of object instantiation.

Composition of behaviours and objects can happen as follows:

 An object can contain multiple behaviours.

 A behaviour can also contain multiple behaviours.

The behaviours are also called mixin‟s. (McNeile and Simons, 2004).

In theoretical papers like (McNeile and Simons, 2006), the terminology of Protocol Machines

and Systems is used. In practical documents like the Modellers‟ Guide (Metamaxim), one

talks about Objects and Behaviours.

These concepts relate as follows:

 A behaviour maps to a Protocol Machine.

 A behaviour containing other behaviours maps to a Protocol System.

 An Object is a Behaviour that can be instantiated. So all Objects are Behaviours, but

not all Behaviours are Objects.

4.4.5. Derived Attributes and States

Both an attribute and state can be derived. For derived attributes and states, the value is not

stored, but computed when needed. Computation in the ModelScope tool is implemented in a

Java callback.

Derived attributes and states enable abstraction over a dataset.

For example: the state of the Protocol Machine Debtor can be derived as follows: if the sum

of all unpaid bills is greater than zero, the state is Unpaid, otherwise Paid.

23

When using derived states, the state transition is not triggered directly by an event. Derived

states are depicted as follows:

Figure 4 Protocol machine Debtor with derived state

4.4.6. Sub Events

An event is a data representation of an occurrence of interest in reality. Sometimes it is

needed to generate multiple model events from the real-world event. These generated model

events are called Sub Events. See figure 5 from (McNeile and Simons, 2006).

Figure 5 Model extension

Existing model X is extended into X‟. Real-world events of type e2 are processes by X‟.

Process P generates Sub Events e3 and e4 out of e2 and presents them to model X. Event e1 is

presented directly to X.

X‟ is called an extended model.

4.4.7. Actors

ModelScope has the concept of Actors. An actor represents a group of users of the model. An

actor can only see a subset of objects and events of the model.

For example:

 The actor Member can only operate on Policies and Claims.

 The actor Functional Management can only operate on Products and Coverages.

With actors, one can define different views on the same model.

4.4.8. Observations

This section contains some observations regarding the applicability of protocol models for

creating an executable model of healthcare insurances.

24

Protocol Machines are suitable for modelling the behaviour of "transactional business

systems". (McNeile & Simons, 2006). In transactional business systems, an event often has

impact on multiple objects. Each of these objects may decide to refuse the event. The

composition semantics of Protocol Modelling support this, because each object independently

may decide to refuse the event. The event is then rejected as a whole. This leads to better

encapsulation.

An example from the domain of OHI Next: a submitted claim relates to an insured person.

An insured person has its own state machine. If the state machine of the insured person is in

the state Late Payment, then the claim is refused.

Besides that, Protocol Modelling has derived states. The state of a protocol machine is

calculated on demand by the state-function. Derived states "... increase the expressive power

to describe action sequencing protocols that depend on the values of stored data”.

4.5. Modelling Adaptation using Protocol Modelling

This section describes the modelling of product adaptation with protocol modelling. Only the

adaptation options used by OHI Next are discussed. See section 4.2.4 “Adaptation of OHI

Next”.

Code snippets shown in this section originate from the ModelScope tool.

4.5.1. Parameterization

Business rules often have parameters. An example makes this clear: to cut costs, a healthcare

insurance company wants to process claims automatically. Claims over 1000 Euro however,

should be checked manually. The threshold value of 1000 Euro should be adjustable.

This can be modelled as follows: a parameter object contains the adjustable limit value. See

code snippet below:
OBJECT Parameter

NAME Name

ATTRIBUTES Name: String,

 Check Limit: Currency

STATES Active

TRANSITIONS @new*Create Parameter=Active,

 Active*Change Parameter = Active

The Claim object is extended with a Manual Check behaviour. See picture below:

Figure 6 Claim includes Manual Check

25

The Manual Check behaviour determines whether a manual check of the claim is required.

The state of this behaviour is derived with the following callback that compares the claim

amount with the Check Limit:
public String getState() {

 //Get Active instance of Parameter object

 Instance[] parameters = this.selectInState("Parameter", "Active");

 //Get value of threshold.

 int checkLimit = parameters[0].getCurrency("Check Limit");

 //Get claim amount

 int amount = this.getCurrency("Amount");

 //And compare them.

 return amount >= checkLimit ? "Required" : "Not required";

}

So for claims with an amount exceeding the Check Limit, the included behaviour Manual

Check will automatically get the state Required. Note that the Manual Check behaviour can

be reused in other objects, as long as those objects have an Amount attribute.

To summarize:

 It‟s straightforward to model parameterization of business rules using Protocol

Modelling.

 Parameter objects can be added with parameter values stored as attributes.

 Parameter objects can be retrieved and used in callbacks.

4.5.2. User Exits

With a User Exit it is possible to call a custom piece of code from an application. This

possibility must be built into the product beforehand. At predefined spots in the application

logic a user exit can be used.

The interface between the application and the user exit is predefined, i.e. the custom code

must comply with the predefined input and output contract. See picture below:

Figure 7 Product with User Exit

OHI Next uses User Exits quite often. An example is fraud-detection: detection of costs that

are claimed more than once. Algorithms for fraud-detection are hard to prebuild, because they

tend to differ per customer. They are also subject to frequent changes.

So instead of delivering prebuilt fraud detection code, at certain spots in the claims processing

User Exits are defined. The User Exit for fraud detection has a claim as input. The custom

code should return a list of zero or more duplicate claims.

4.5.2.1. User Exits using Protocol Modelling

It is fairly straightforward to model a User Exit using protocol modelling. See picture below:

26

Figure 8 Protocol Model with User Exit

At certain predefined spots in the model, the model submits an event with event arguments.

The custom code of the User Exit handles the event and can operate upon the arguments of

the event. The custom code may generate model events (Subevents) to update the state of the

model.

4.5.3. Reduce impact of changes

This paragraph describes some semantic construct that might reduce the impact of changes on

the model.

Composition enables the break-down of larger machines into smaller ones. Composition thus

leads to:

 Smaller machines which are easier to understand.

 Smaller machines which can be reused more often.

Let‟s give an example:

In certain cases a claim must be adjudicated manually. This aspect can be modelled in a

separate machine Manual Adjudication with states Required, Not Required and Done. This

machine can then be included by all objects for which manual adjudication might be

applicable.

By decomposing a model in smaller units, where every unit has only one role, the impact of

changes will be reduced, because each feature is implemented in only one place. Only one

change to the model is needed when the feature changes.

Derived attributes enable the abstraction over implementation details. A derived attribute can

be considered a contract definition, where implementation is hidden from calling client

objects.

Changes in the implementation do not influence the clients, as long as the derived attribute

behaves the same.

The same applies to derived states.

27

5. Design Protocol Model for Base Insurance 2006

This chapter describes the design and construction of a protocol model of the Base Insurance

(situation as per 1 January 2006).

5.1. Requirements

Because the domain is restricted to the Base Insurance, it is easy to formulate the

requirements:

 The model should be able to calculate the benefits for submitted claims according to

the coverage rules of the Base Insurance.

 The model should show the results to the insured members (benefit specification).

The Dutch government determines the coverage for the Base Insurance. The functional

requirement can be derived from the Zorgverzekeringswet (Law for Health Insurance)

See “Appendix 2: The Dutch Base Insurance” for a list of coverages of the Base Insurance.

Non-functional requirements are out-of-scope.

5.1.1. Actors

The following actors play a role in the model:

 Members (Persons that have a Policy) can submit claims. The model processes the

claims and calculates the covered amount according to the rules of the Base Insurance.

The calculation results are presented to the members in the form of a Benefit

Specification.

 Relation Management is responsible for (de)registering Persons and creating Policies.

 Functional Management configures the model by setting up coverages rules.

28

Figure 9 Actors

The following objects are involved in the processing of a claim:

Figure 10 High Level Object Model

 A person can have zero or more policies.

 Claims are submitted within the context of a policy.

 A claim concerns the declaration of the cost of a medical treatment. The medical

treatment is defined as a Care Procedure.

29

Claims processing is triggered by submitting of a claim. The ultimate result is to calculate the

covered amount (benefit) and possible other results. Those results are in the claim object.

The member receives a benefit specification with the results of the calculation.

5.1.2. Use Cases

From the total list of coverages defined in “Appendix 2: The Dutch Base Insurance”, nine use

cases are derived. See table below. Each use case concerns a different aspect. A model that

implements all these use cases supports the Base Insurance almost completely.

Table 2 Base Insurance Use Cases

Use Case Description Aspect

1 Not Covered (Alternative Medicine) Not Covered.

2 Covered 100% (General Practitioner Care) Completely covered.

3 Covered 100% with Age Limit (Dental Care) Completely covered

depending on age of

member.

4 Covered 100% up to maximum number

(Nutritional Counselling)

Completely covered up to

maximum number of units.

5 Covered with Co-payment (Inpatient

Delivery)

Deduction of co-payment per

unit.

6 Coverage of Treatment (Physiotherapy) Completely covered, starting

from a treatment.

7 Cover to Maximum Number of Units with

Co-payment (Maternity Care)

Co-payment per unit and

maximum number of units.

8 Cover specific treatments (IVF) Completely covered for

specific treatments.

9 Cover Partly (Prostheses) Covered percentage.

The aspects can be divided in two groups:

1. Aspects that determine whether a claim is covered or not. Coverage can be

unconditional, or subject to conditions like age and earlier treatments consumed.

2. Aspects that determine how much is covered: fully, partly, or with co-payment.

30

5.2. Assumptions

This chapter describes the assumptions used for the design and the construction of the

protocol model.

5.2.1. Goal of the model

A model represents only a part of reality. Which part depends on the goal of the model. The

goal of the model described in this report is to model the rules of the Dutch Healthcare

Insurance „Base Insurance‟. The rules of the Base Insurance are described in

“Appendix 2: The Dutch Base Insurance”. This part of the model is elaborated in detail.

Other aspects of healthcare insurance are modelled in less detail. This concerns for example

the maintenance of data dealing with policies.

5.2.2. Abstraction and Parameters

Product software will be used by different customers. An important aspect of product

software is to which extent and how the application supports differences between clients,

because it is not likely that processes at different customers will execute exactly the same.

The product has therefore to be adapted to a situation at a specific customer.

The product also needs adaptation for changes caused by the passing of time. Take for

example the yearly changes in the law for the coverage of the Base Insurance.

So an important requirement is flexibility: the possibility to adapt the product to different and

changing circumstances.

The required flexibility is taken into account during the design of the protocol model by

applying abstraction and parameterization.

Abstraction: domain concepts are not directly translated into the model, but are generalized

first. Take for example General Practitioner Care and Dental care, for which the costs are

covered by the Base Insurance. The model uses the abstraction Coverage to model both

General Practitioner Care and Dental Care. Abstraction lowers the chance that changes in the

domain lead to structural changes in the model: “The abstractions that emerge during design

are key to making a design flexible” (Gamma et al, 1995).

Parameters: boundary values and constants are not hard-coded in the model, but can be set

using parameters. This concerns age boundaries and coverage percentages for examples.

5.2.3. Reusability

The use of abstraction and parameters as described in the previous section, leads to better

reuse: constructions of the model can be used to model several insurance products using the

same generalizations.

5.2.4. Time validity support

Many objects in the model are time valid: their data only applies during a certain period of

time. Most commonly, time validity is modelled by adding start- and end date to objects. In

the constructed model this time validity is in general not implemented to simplify the model.

5.2.5. Unique keys

Object instances are identified using one or more attributes. For example, a policy has a

policy number. It‟s not possible to have multiple policies with the same policy number. The

enforcement of uniqueness of identifying attributes is not implemented in the model.

ModelScope does not have easy support to model unique keys.

31

5.2.6. Authorizations

For certain medical procedures, the member needs to get an approval from the insurance

company before claiming the costs. Such an approval is called an authorization. Due to the

limited amount of time available, authorizations are not included in the model.

5.3. Analysis of Benefit Rules

This chapter presents an analysis of the benefit rules of the Base Insurance. The analysis is

based on the overview presented in “Appendix 2: The Dutch Base Insurance”.

5.3.1. Products and Coverages

In addition to the Base Insurance, an Insurance Provider can offer additional supplementary

insurances. Both Base Insurance and supplementary insurances are examples of insurance

products.

A Product supplies benefits for certain medical treatments. For the Base Insurance, it is

defined by law which treatments are covered. Examples are General Practitioner Care,

Speech-training and Haemodialysis.

For supplementary insurances, an insurance provider can freely determine which costs are

covered by the supplementary product.

So a Product p contains a set of coverages Cp:

Cp={c1, c2, c3...,cn}

A Coverage consists of a set of medical treatments. For each medical treatment, a Care

Procedure is defined. The coverage of General Practitioner Care contains the procedures

(among others):

 01/12000: Short consult.

 01/12001: Long consult.

 01/12002: Consult at home.

So a Coverage C can be defines as a set of Care Procedures CPc:

C=(CPc) where CPc ={cp1, cp2, cp3...,cpn}

Product p covers the cost of care procedure cpx if p contains a coverage c where prx is in the

set of care procedures of c:

Covered(p, cpx) := c  Cp (cp  cpc (cp= cpx))

The sets of covered care procedures of the different coverages of a product are disjunct. A

procedure cpx is covered by exactly one coverage of a product p, or the care procedure is not

covered at all.

c1  Cp (Covered(c1, cpx)  (c2  Cp (!Covered(c2, cpx)  c2=c1))

5.3.2. Conditions

So a coverage covers the cost of a set of care procedures. Care procedure cp is covered by

coverage c if cp is part of the set of covered procedures of c. This is an example of a

condition.

A condition must be satisfied to get benefits for the cost of a care procedure.

For some coverage‟s, additional conditions apply. This applies for example to „Occupational

Therapy‟. This coverage only covers a maximum of ten hours of treatment per year.

The Base Insurance has different types of conditions:

 A condition on the Number of Units. For example for Occupational Therapy.

 A condition on the Treatment Number. For example for IVF: only the second and

third treatment is covered.

32

 A condition on the Age of the member. This applies Dental Care is only covered up to

on age of 18.

It might look like more types of conditions exist in the Base Insurance. For example, for care

is only covered with a chronic indication. In practice however, a different care procedure is

defined for the same treatment. So a care procedure is defined for chronic and one for non-

chronic indication. So a separate condition type is superfluous.

The definition of coverage C from previous section can be extended to:

C=(CPc, CN) where CN = {cn1, cn2, ... cnn}, n>=1 is a set of conditions to be satisfied by cpx

for cpx being covered. CN at least contains the condition that cpx should be an element of CPc.

5.3.3. Benefit Calculation

When all conditions are satisfied, the benefit amount can be calculated. Different possibilities

exist for the benefit calculation (bc):

 Cost is covered fully.

 A percentage of the cost is covered. This applies for example to prostheses, which are

covered for 75 percent.

 The cost is covered after deduction of a co-payment. This applies for example to

Maternity Care.

So the definition of coverage C can be extended to:

C=(CPc, CN, bc) where bc BC and BC = {full, percentage, co-payment}

5.3.4. Mathematical Model of Benefit Rules

To summarize the three preceding sections, a product p can be defined as a list of coverages:

Cp={c1, c2, c3...,cn} where cn is a coverage.

Coverage C is defined as: C=(CPc, CN, bc) where

1. CPc ={cp1, cp2, cp3...,cpn} is a list of covered care procedures.

2. CN = {cn1, cn2, ... cnn}, n>=1 is a set of conditions to be satisfied.

3. bc BC and BC = {full, percentage, co-payment}

5.3.5. Policies and claims

The main goal of the model is the modelling of coverage rules. Policies and claims are less

detailed in the model.

A policy enables a member to claim coverage of costs covered by the product. A policy has a

fixed duration of one year. Only medical costs of that year are covered.

Some simplifications have been made:

 In the model, a policy has only one member. In reality, the members of a whole family

are enrolled on the policy.

Members can submit claims to get healthcare costs paid. A claim concerns the declaration of

healthcare related costs in order to get compensation of these costs according to the rules of

the policy.

Again: the model is simplified: in reality a claim has one or more claim lines, so several costs

can be claimed together. The model does not have claim lines.

33

5.4. Model

Based on the goals and analysis described in the previous two chapters, the protocol model is

constructed. This chapter describes the model.

5.4.1. Structure

The figure below depicts the structure of the most important parts of the model. It gives an

overview of the relations between the objects. Some details are omitted for simplicity. These

details are described in later sections.

Figure 11 Main structure of healthcare insurance model

The next three sections each describe a part of the model presented in the figure above:

 Coverage rules contain the behaviours Product, Coverage, Care Procedure, Care

Procedure Member, and Coverage.

 Policies and Claims are targeted towards the insured member. This part contains

behaviours Person, Policy and Claim.

 The coverage rules are applied to submitted claims in the part that contains the

behaviours Care Procedure Condition, Policy Coverage and Policy Coverage Full.

Multiple instances are shown for CoverageFull and PolicyCoverageFull because multiple

different object types exists that include Coverage and PolicyCoverage. Details follow in next

sections.

34

5.4.2. Modelling of coverage rules

This section describes the modelling of coverage rules. This part of the model is used by actor

Functional Management.

The behaviours presented in this section mainly have data, they hardly have behaviour. Most

objects only have the Active state
3
. All objects have a Create and a Change event to create

new and change existing objects respectively.

The behaviours in this section only model the definition of coverage rules. The usage of the

definition in the context of a policy is described in 5.4.4 “Modelling of the application of

coverage rules”.

The table below gives a short description of the objects and behaviours used in this part of the

model. More details can be found in 15 “Appendix 6: Model Reference”.

Table 3 Behaviours used to model Coverage Rules

Behaviour Description Includes

AgeLimit This behaviour must be included

by all coverages where the age of

the member determines the

coverage.

BenefitCoPayment This behaviour must be included

by all coverages where a co-

payment should be deducted.

BenefitPercentage This behaviour must be included

by all coverages that only cover a

percentage of the cost.

CareProcedure A care procedure is a definition of

a medical treatment.

CareProcedureGroup A CareProcedureGroup models a

set of care procedures.

CareProcedureGroupMember This object relates a care

procedure to a care procedure

group.

Coverage Coverage is a set of care

procedures that are covered using

the same rules.

CareProcedureGroup

CoverageAge This object models a coverage

with has an age condition: the

claim is only covered when the

age of the member at the claim

date is within the specified limits.

Coverage

AgeLimit

CoverageCoPayment This object models a coverage for

which a co-payment is deducted.

Coverage

BenefitCoPayment

CoverageFull This object models a coverage that

covers the full price of the care

procedure.

Coverage

3
 The state Inactive could be added to certain objects. An inactive object still exists, but

cannot be used anymore. A product could be declared Inactive when no new policies should

be created for that product for example. Making objects inactive is not part of the design of

the model.

35

CoverageMaximumNumber This object models a coverage that

covers up to a maximum number

of units.

Coverage

MaximumNumberLimit

CoverageMaximumNumber-

CoPayment

This object models a coverage

which both a co-payment amount

and a maximum

Coverage

MaximumNumberLimit

BenefitCoPayment

CoverageTreatment This object models a coverage for

certain treatments only.

Coverage

TreatmentLimit

MaximumNumberLimit This behaviour must be included

by all coverages that cover up to a

maximum number of units.

Product A product is a set of coverages of

healthcare costs.

TreatmentLimit This behaviour must be included

by all behaviours that only cover

certain treatments.

CoverageMaximumNumberCoPayment illustrates the mixin/multiple-inheritance capabilities

of protocol modelling. The combination of maximum covered number of units and co-

payment is implemented by including both the behaviours MaximumNumberLimit and

BenefitCoPayment.

5.4.3. Modelling of policies and claims

This part of the model contains some simplifications compared to reality. For example, a

policy has only one member, while in reality a whole family can be enrolled.

5.4.3.1. Object Person

A person is a human being known by the insurance company. A person may have (had) a

policy. The diagram below shows the state transitions of Person:

Figure 12 Person Protocol Machine

5.4.3.2. Object Policy

A policy grants a person the right to claim healthcare cost covered by the policy product. See

the picture below for the Policy protocol machine:

36

5.4.3.3. Object Claim

A member submits a claim to the insurance company in order to receive benefits for

healthcare costs according to the coverage rules of the policy product.

The diagram below shows the state transitions for Claim.

Figure 13 Claim Protocol Machine

State Submitted looks like a dead-end. This is however not the case. Event Submit Claim is

handled by a callback and translated in either a Reject Claim or a Process Claim event.

Process Claim in its turn generates an Enter Price event.

Claim includes behaviours Benefit and CoPayment. They store the results of the claims

processing. Their state machines are shown in diagrams below:

37

Figure 14 CoPayment Protocol Machine

Figure 15 Benefit Protocol Machine

Both machines have an amount: CoPayment Amount and Benefit Amount respectively.

After processing a claim, the Benefit and CoPayment machine give information about the

coverage of the claim:

 When CoPayment is in the Deducted state, co-payment is applied for the claim. The

amount is in attribute CoPayment Amount.

 When Benefit is in the Granted state, benefits were granted to the claim. The amount

is in attribute Benefit Amount.

An alternative way of modelling was possible: just use the state of the claim. Because

CoPayment and Benefit are independent factors, the state was normalized into the two

included behaviours.

Claim events are generated by actor Member. Most events are however generated sub-events.

38

5.4.4. Modelling of the application of coverage rules

This section describes the part of the model that applies the coverage rules to submitted

claims. Besides the structure of Policy Coverages, the internal sub-events are described.

5.4.4.1. PolicyCoverages

The coverage of a claim can depend on earlier submitted claims. This is for example the case

if a coverage has a maximum defined: when the maximum has been reached, new submitted

claims are not covered anymore and are rejected by the coverage. So it is important to capture

the state of a coverage in the context of the policy. This context is stored in PolicyCoverage

behaviours. Each policy contains a set of policy coverages. For each Coverage object

described in section 5.4.2 “Modelling of coverage rules” a related PolicyCoverage object

exists:

 PolicyCoverageFull is related to CoverageFull

 PolicyCoveragePercentage is related to CoveragePercentage

 PolicyCoverageAge is related to CoverageAge

 Etc.

When a new policy is created, PolicyCoverages are created for all Coverages of the product,

using the Create Policy callback. See code-snippet below:

Callback for Create Policy

Instance[] coverages = product.selectByRef("Coverage", "Product");

for (Instance coverage: coverages) {

 //Generate a create policy coverage event

 String objectType = coverage.getObjectType();

 Event event = this.createEvent("Create PolicyCoverage");

 event.setNewInstance("PolicyCoverage","Policy" + objectType);

 event.setInstance("Coverage", coverage);

 event.setInstance("Policy", policy);

 event.submitToModel();

}

For all defined coverages, a Create event is submitted.

So, after creating a policy for a product with three coverages, three policy coverages are

created of matching type. See the next picture
4
:

Product Base Insurance is associated with coverages of different type for General Practitioner

Care, Dental Care and Nutritional Counselling. Policy 123-456-789 related with this product,

has three policy coverages, one for each coverage.

4
 Not all available coverage types are shown in this diagram. See table 5 for the full list.

39

Figure 16 Policy and PolicyCoverages

During processing, the PolicyCoverage gets necessary information from its related Coverage

object. For example PolicyCoverageAge retrieves the age limits from the AgeLimit behaviour

included in the CoverageAge object.

40

The table below gives a short description of the objects and behaviours used in this part of the

model. More details can be found in 15 “Appendix 6: Model Reference”.

Table 4 Behaviours used to model Coverage Rules

Behaviour Description Includes

AgeCondition Only accepts event ProcessClaim

if the age of the member at the

claim date is within the defined

age limits.

BenefitCoPayment Similar to BenefitFull, after

copayment deduction.

BenefitFull Calculates benefits amount =

number * price.

BenefitPercentage Calculates benefits amount =

number * price * percentage.

CareProcedureCondition Only accepts event ProcessClaim

if the care procedure is in the care

procedure group of the coverage.

FixedPrice Price calculator that sets the price

of the claim to the price of the

procedure.

MaximumNumberCondition Only accepts event ProcessClaim

if the total claimed number is

below the defined maximum

number of treatments.

PolicyCoverage Behaviour to be included by all

PolicyCoverages.

FixedPrice

CareProcedureCondition

PolicyCoverageAge PolicyCoverage for fully covered

care procedures for members of

certain age only.

PolicyCoverage

AgeCondition

PolicyCoverageCoPayment PolicyCoverage for care

procedures with copayment.

PolicyCoverage

BenefitCoPayment

PolicyCoverageFull PolicyCoverage for unconditional

fully covered care procedures.

PolicyCoverage

PolicyCoverageMaximum-

Number

PolicyCoverage for fully covered

care procedures up to a defined

maximum number of treatments.

PolicyCoverage

MaximumNumber-

Condition

PolicyCoverageMaximum-

NumberCoPayment

Combination of

PolicyCoverageMaximumNumber

and PolicyCoverageCoPayment.

PolicyCoverage

MaximumNumber-

Condition

BenefitCoPayment

PolicyCoveragePercentage PolicyCoverage for partially

covered care procedures.

PolicyCoverage

BenefitPercentage

PolicyCoverageTreatment PolicyCoverage for fully covered

care procedures for certain

treatments only.

PolicyCoverage

TreatmentCondition

TreatmentCondition Only accepts event ProcessClaim

if the treatment sequence is within

the defined limits.

41

5.4.4.2. Delegate a claim to a PolicyCoverage

A member does not act upon policy coverages, but a member submits a claim to a policy. So a

policy acts as a façade for the policy coverages.

A claim is covered if the policy contains a policy coverage that covers the procedure. In the

model, this is implemented this way: “A policy coverage covers a claim if the policy coverage

accepts event Process Claim (i.e. if Process Claim is in context)”.

So the policy can forward the Submit Claim event to the (one and only) policy coverage for

which Process Claim is in context. See the following code snippet:

Callback Submit Claim

//find all coverages that can process the event: should be exactly one.

Instance[] coverages = policy.selectInContext("PolicyCoverage", "Process

Claim");

List<Instance> policyCoverageList = new ArrayList<Instance>();

for (Instance coverage: coverages) {

 Instance coveragePolicy = coverage.getInstance("Policy");

 if (coveragePolicy.equals(policy)) {

 policyCoverageList.add(coverage);

 }

}

if (policyCoverageList.size() != 1) {

 log (policyCoverageList);

 Event event = this.createEvent("Reject Claim");

 event.setInstance("Claim", claim);

 event.setString("Processing Info", "Rejected: "+ coverages.length + "

coverages found");

 event.log();

 event.submitToModel();

}

else {

 //Create processClaim event

 Event event = this.createEvent("Process Claim");

 event.setInstance("PolicyCoverage", policyCoverageList.get(0));

 event.setInstance("Claim", claim);

 event.log();

 event.submitToCallback();

}

The acceptance or rejection of a claim is totally delegated from the policy to the policy

coverages. Three situations are possible:

 No PolicyCoverage accepts the ProcessClaim event. This means the care procedure of

the claim is not covered by the product.

 Multiple PolicyCoverages accept the ProcessClaim event. This is a setup error: The

sets of care procedure group members for all coverages of the product are not disjunct.

The care procedure of the claim is defined as a member of multiple coverages.

 Exactly one PolicyCoverage accepts the ProcessClaim event. The care procedure of

the claim is covered by this coverage. The ProcessClaim event is sent to the

PolicyCoverage.

5.4.4.3. Conditions

A policy coverage should only accept the ProcessClaim event if all conditions are met.

Conditions are evaluated by Condition behaviours that are included in PolicyCoverages.

Examples are:

42

 CareProcedureCondition only accepts the ProcessClaim event if the care procedure of

the claim is in the list of covered procedures of the coverage.

 AgeCondition only accepts event ProcessClaim if the age of the member at the claim

date is within the defined age limits.

 MaximumNumberCondition only accepts event ProcessClaim if the total claimed

number is below the defined maximum number of treatments.

Adding conditions to a PolicyCoverage leverages composition of protocol modelling

behaviours.

5.4.4.4. Price- and Benefit calculation

The moment a PolicyCoverage accepts a Process Claim event, all conditions are satisfied. The

claim processing can start. Claim processing consists of the execution of a number of steps

depicted in diagram below:

Figure 17 Claim Processing Steps

These steps are implemented in the Process Claim callback. This callback issues four events:

1. The Assign PolicyCoverage event associates the claim with the policy coverage that

processes it. This facilitates calculation of total consumption on a policy coverage.

2. The Calculate Price<type> event populates the Price attribute in the claim. Price is the

input of the benefit calculation.

3. The Calculate Benefit<type> event calculates the benefits.

4. The Processing Complete event sets the state of the claim to Processed.

Note that the implementation of step 3 and 4 is flexible, depending on the policy coverage

type, a different event is triggered:

 The type of price calculation is determined by getting the value of the attribute

PriceCalculatorName. This attribute is implemented in behaviour FixedPrice and has

the value FixedPrice. So the flexibility for different price calculators is in place, but

not used in the model. It‟s not required to support the Base Insurance.

 The same applies for the benefit calculation. The type is determined by getting the

value of the BenefitCalculatorName. This attribute is implemented in the different

Benefit objects and can have the values BenefitFull, BenefitPercentage or

BenefitCoPayment.

With this convention, it is easy to add new Benefit and Price calculators as long as:

 A derived attribute BenefitName or PriceCalculatorName is defined.

 An event Calculate<BenefitName> or Calculate< PriceCalculatorName> exists.

5.5. Flexibility

This section describes how flexibility is designed into the model.

5.5.1. Configurable Coverages

All coverages can be setup using the Functional Management actor. All definitions and limits

are configurable by setting values to parameters. This applies to:

 List of care procedures that are part covered by the coverage

43

 Configuration parameters of limits like Age From and Age To.

So setting up a coverage is just a matter of defining the coverage, as long as one of the

defined coverage types is used. See table below for the defined coverage types and their

purpose:

Table 5 Coverage Types

Type Purpose

CoverageFull Covers 100% of the price

CoveragePercentage Covers a percentage of the price

CoverageAge Covers 100% if age within limits

CoverageCoPayment Covers after deducting a co-payment per unit

CoverageTreatment Covers 100% for certain treatment number

CoverageMaximumNumber Covers up to a maximum number of units

CoverageMaximumNumberCoPayment Covers up to a maximum number of units

and also deducts a co-payment per unit.

5.5.2. Adding Coverage types

In cases where the predefined Coverage Types are not sufficient, one can define new

coverages by extending the model:

 Create a new Coverage<X> object that includes the Coverage behaviour.

 Include other behaviours that hold required parameters for Coverage<X>

 Create a PolicyCoverage<X> object.

 Add Condition behaviours as needed to PolicyCoverage<X>

Because each condition is modelled in its own behaviour, they can be reused when creating

new coverages. In fact, this has been done for CoverageMaximumNumberCoPayment: it‟s

just a combination of CoverageCoPayment and CoverageMaximumNumber.

5.5.3. Steps in the Flow

A claim is processed by executing several steps in sequential order. This process is

implemented in the Process Claim callback. By changing this callback, new steps can be

added.

5.5.4. Pluggable Price- and Benefit Calculator

Both for price- and benefit calculation, the Strategy pattern is used. So per coverage, the

implementation of price- and benefit calculation can vary.

Steps required for adding new calculators:

 Create a new Benefit<X> or Price<X> behaviour

 Include the Benefit<X> or Price<X> in the PolicyCoverage that should use it.

 Implement the calculator in the callback of event Calculate Benefit<X> or Calculate

Price <X>

5.6. Support of use cases

The developed model supports all use cases defined in 5.1.2 “Use Cases”. “Appendix 7: Use

cases” describes how the use cases can be executed.

44

6. Results and analysis

In the previous chapter, a flexible model is described for the Base Insurance coverages as of 1

January 2006. This chapter describes the impact on the model of changes in the Base

Insurance since 1 January 2007 until 2011. As such, it captures the results of the third phase

of the research project.

The first section gives an overview and classification of the type of changes for each year.

The second section describes the impact of the changes on the model.

6.1. Overview and Classification of Changes

A detailed overview of all changes in the Base Insurance can be found in “Appendix 3:

Changes in the coverage of the Base Insurance”.

This section summarizes and classifies the changes. The classification scheme used conforms

to the product and coverage definitions defined in 5.3.4 “Mathematical Model of Benefit

Rules”.

Changes are classified as one of:

1) Change in covered care procedures. Two subclasses are defined:

a) Coverage Added. A care procedure that was uncovered previously, has become a

covered procedure.

b) Coverage Removed: A care procedure that was covered previously, has become

uncovered.

2) Condition Change: A care procedure that was covered before is still covered but the

conditions for coverage have become more restrictive or less restrictive.

3) Change in benefit calculation. The algorithm to calculate the benefit amount of a claim

has changed.

4) Other Change: Changes that do not belong to one of the three categories above.

45

The table below classifies all changes since 1 January 2007 using the four change types:

Table 6 Overview of Changes

Year Change in Covered Care Procedures Condition

Changed

Change in

Benefit

Calculation

Other change

 Coverage Added Coverage

Removed

2007 Prenatal screening

for congenital

defects

 First IVF

treatment also

covered

 Abdominoplasty Personal Budget

for visual aids

2008 Mental Healthcare

 Age limit for

Birth Control

removed

Mandatory

Yearly

Deductible

 Dental Care age

limit set to 21

 Maximum

number of hours

maternity care

increased with

five.

2009 Diagnosis and

treatment of severe

dyslexia

Lift Chair Increase of

Mandatory

Yearly

Deductible

 Hypnotics and

tranquillizers

2010 Mandibular

advancement

devices

Mucolytic Agent

Acetylcysteïne

Organ

transplantation

outside EU

Increase of

Mandatory

Yearly

Deductible

2011 Durable Medical

Equipment

Birth Control age

limit set to 21

 Simple

extractions by

oral surgeons

Dental Care age

limit set to 18.

6.2. Impact of Changes on Model

The impact of changes is divided in two categories:

1. Changes that impact the configuration of the model. The change can be implemented

in the model by changing the model configuration: adding/deleting or modifying

model data only.

2. Changes that impact the structure of the model: the object and behaviour definitions

of the model are not sufficient to implement the change. New objects and behaviours

are needed.

Preferably, each change type only impacts the configuration of the model. The model

represents a working software product so changes that impact the configuration only do not

lead to software changes in the product.

46

The sections below each describe the impact of one of the change types defined in section 6.1

”Overview and Classification of Changes”.

6.2.1. Impact of Change Type “Coverage Added”

In general, changes of this type only impact the configuration of the model. New covered

procedures can be implemented in the model by defining additional Coverage and

CareProcedureGroupMember instances.

6.2.2. Impact of Change Type “Coverage Removed”

The same can be said about the impact of change type “Coverage Removed‟. Changes of this

type can be implemented by removing/deactivating CareProcedureGroupMember instances.

6.2.3. Impact of Change Type “Condition Changed”

Changes of this type in general can be implemented by changing the configuration of the

model. Take for example the change of 2011 “Dental Care age limit set to 18”. This is easily

implemented by setting the “Age To” attribute of the AgeLimit behaviour to 18.

6.2.4. Impact of Change Type “Change in Benefit Calculation”

In 2006, a mandatory deductible did not exist for the Base Insurance. So the model described

in chapter 5 “Design Protocol Model for Base Insurance 2006” does not contain behaviours to

handle a mandatory deductible. So the introduction of the mandatory deductible in 2008

impacts the structure of the model.

6.2.5. Impact of Change Type “Other Change”

In 2007, a Personal Budget for visual aids for visually disabled people is created. When a

Personal Budget applies, the financial flow becomes different: the budget amount is paid

upfront, before the costs are made. When a Personal Budget is involved, no costs are claimed.

There is no need to process a claim anymore. So this change does not impact the model.

6.3. Summary of Results

This section summarizes the results. All changes occurred in the Base Insurance since 2006,

are classified in four different types. Each change can be implemented by either:

 Changing the model configuration.

 Changing the model structure.

The table below shows the relation between the four change types and the two possible model

impacts:

Table 7 Change Types and Model Impact

Change Type Impact on Model

Configuration

Impact on Model Structure

Change in Covered Care

Procedures

Yes No

Condition Changed Yes No

Change in Benefit

Calculation

Yes Yes

Other Change n.a. n.a.

Only the changes of type “Change in Benefit Calculation” are impacting the model structure.

The other change types can be implemented by changing the model configuration.

The introduction of a mandatory deductible in 2008 cannot be handled by the model

developed in chapter 5, because this concept did not exist in 2006. The concept of a

deductible must be added to the model developed in chapter 5 for two reasons:

47

 A deductible is a common used concept in insurances. The extensions to the model are

useful not only for healthcare insurances but also for other type of insurances.

 It gives the opportunity to gain experience with model evolution: what‟s the impact of

the structure change on other parts of the model. In other words, is it possible to

enhance the model by adding a new concept without a major rewrite?

The next chapter analysis the concept of a mandatory deductible as it exists in the Base

Insurance and describes how the model is extended.

48

7. Model Enhancements

In the previous chapter it is concluded that the model structure has to be changed to support a

mandatory deductible. This chapter describes how that can be done.

7.1. Analysis of Mandatory Deductible

This section analysis the requirements of the mandatory deductible as introduced in the Base

Insurance in 2008. See section “Mandatory Yearly Deductible” in “Appendix 3: Changes in

the coverage of the Base Insurance” for more details.

The mandatory deductible:

 Has a configurable amount, starting with 150 euro in 2008.

 Does not apply to members below the age of 18.

 Does not apply to all coverages. General Practitioner Care is excluded for example.

The cost of care procedures that are subject to the yearly mandatory deductible have to be

paid by the member up to the amount of the deductible. When the deductible is fully

consumed, costs are reimbursed by the insurance company in the normal way.

Chronically ill and disabled people are financially compensated. This compensation does not

impact claims processing and thus needs not to be implemented in the model. The

compensation is afterwards at the end of the year.

7.1.1. Combination with Co-payment and partly Coverage

Some words need to be said about the combination of co-payment, partly coverage and a

mandatory deductible because the sequence in which they are applied impacts the results. In

the Base Insurance, the sequence is defined as follows:

1. Co-payment is deducted first.

2. After that, the coverage is calculated.

3. The calculated coverage amount is subject to the mandatory deductible.

Take this artificial example:

 Care procedure CP1 costs 400 euro and a co-payment of 80 euro is defined.

 The Base Insurance covers 75% of CP1.

 Member M1 has not consumed anything of the mandatory deductible of 150 euro.

M1 submits a claim for CP1. The processing of this claim is as follows:

 A co-payment of 80 euro is deducted.

 From the remaining 320 euro, 75% = 240 euro is covered.

 The yearly deductible is subtracted. The remaining 240-150 = 90 will be paid to M1.

 M1 now has completely consumed his yearly deductible. For a next claim of CP1, the

insurance company will pay 240 euro.

7.2. Implementation of Mandatory Deductible

The introduction to the mandatory deductible is classified as a change in the benefit

calculation.

Remember that a Coverage C is defined as: C=(CPc, CN, bc) where bc BC and BC = {full,

percentage, co-payment}. The model described in chapter 5 supports adding new benefit

calculation strategies, see “Pluggable Price- and Benefit Calculator” so it is possible to

implement new benefit calculations that support a deductible.

It turns out however that a mandatory deductible is an independent concept compared to

benefit calculation. All possibilities of benefit calculation (full, percentage and co-payment)

can be combined with and without a mandatory deductible. As benefit calculation is

independent of mandatory deductible, it is better to introduce a whole new concept to the

49

model. The introduction of the mandatory deductible in 2008 did not change the results of the

benefit calculation, but did change the amount being paid to the member:

 In 2007: the covered amount was paid to the member.

 In 2008: the covered amount was paid to the member after subtraction of the

mandatory deductible (if not consumed yet).

7.3. Extended Product Definition

To support mandatory deductibles, the mathematical model of 5.3.4 “Mathematical Model of

Benefit Rules” is extended to (extensions in bold):

Cp=({c1, c2, c3...,cn}, d, al) where cn is a coverage. Parameter deductible d, d ≥0 defines the

deductible amount. Parameter al defines the age limits of members for which the deductible

applies.

Coverage C is defined as: C=(CPc, CN, bc,dc) where

1. CPc ={cp1, cp2, cp3...,cpn} is a list of covered care procedures.

2. CN = {cn1, cn2, ... cnn}, n>=1 is a set of conditions to be satisfied.

3. bc BC and BC = {full, percentage, co-payment}

4. dc  {true, false} indicates whether the mandatory deductible applies to the coverage.

This is implemented in the model by including the new behaviour Deductible in the Product

object. See diagram below:

Figure 18 Product Definition Extension

The Deductible behaviour has the attribute Deductible Amount, holding the deductible

amount for the product for members matching the age limits.

Attribute “Indicator Mandatory Deductible” is added to the behaviour Coverage to indicate

for which coverages the mandatory deductible applies.

50

7.3.1. Extended Claim processing

During claims processing, the mandatory deductible should be calculated and stored in the

claim object. A separate behaviour Deductible Consumption is created for that purpose. The

claims object includes this behaviour:

Figure 19 Deductible Consumption

The states of this object reflect how the claim is impacted by the mandatory deductible:

 Unknown: the claim is not related to a policy coverage yet, so it is not known whether

a mandatory deductible applies

 Not Applicable: the mandatory deductible does not apply for this claim.

 Applicable: the mandatory deductible does apply but has not been calculated yet.

 Consumed: the mandatory deductible is calculated for the claim

 Limit Reached: the mandatory deductible does apply for the claim, but the member

has completely consumed the deductible.

The calculation of the mandatory deductible is added as an additional last step in the claims

processing:

Figure 20 Claim Processing Steps with deductible calculation

(See 5.4.4.4 “Price- and Benefit calculation” for the steps in the original model).

51

The deductible is calculated using the callback code below:
String deductibleState=claim.getState("Deductible Consumption");

if (!("Not Applicable".equals(deductibleState))) {

 int deductibleAmount = 0;

 int unConsumedDeducatable = policy.getCurrency("PolicyDeductible",

"Unconsumed Amount");

 int benefitAmount = claim.getCurrency("Benefit Amount");

 if (benefitAmount <= unConsumedDeducatable) {

 deductibleAmount = benefitAmount;

 }

 else {

 deductibleAmount = unConsumedDeducatable;

 }

 if (deductibleAmount > 0) {

 Event consumeDeductible = this.createEvent("Consume Deductible");

 consumeDeductible.setInstance("Deductible Consumption", claim);

 consumeDeductible.setCurrency("Deductible Amount",

deductibleAmount);

 consumeDeductible.submitToModel();

 }

}

The current unconsumed deductible is retrieved from the PolicyDeductible behaviour. This

behaviour is included in the Policy object and has three derived attributes:

1. Deductible Amount: the deductible amount applicable for the policy, depending on

product and member age.

2. Consumed Amount: the total consumed mandatory deductible of the policy, calculated

as DeductibleConsumption.Deductible Amount of all claims of the policy.

3. Unconsumed Amount: Deductible Amount - Consumed Amount.

A new derived attribute Reimbursed Amount is added to the claim object with value

Reimbursed Amount = Benefit Amount – Deductible Amount. The Reimbursed Amount has

the value that finally will be paid to the member.

7.4. Summary

This section summarizes the extensions needed to the original model to support the new

concept of mandatory deductibles. The following extensions to the model are made:

 A new behaviour Deductible is included by object Product. Deductible reuses the

existing AgeLimit behaviour.

 A new attribute Indicator Mandatory Deductible is added to the behaviour Coverage

 A new behaviour Deductible Consumption is included by object Claim.

 A new behaviour PolicyDeductible is included in the object Policy

 A new derived attribute Reimbursed Amount is added to object Claim.

 Callback ProcessClaim is modified to incorporate the additional step of deductible

calculation.

So apart from the modification of callback ProcessClaim, all extensions are additions of new

behaviours and attributes. All other parts of the original model are not touched. This

illustrates the power of the mixin composition style of Protocol Modelling.

52

8. Conclusions and Discussions

This chapter presents conclusions from the research, answers the research questions and

discusses future research.

8.1. Conclusions

The goal for the research is to answer this research question:

Which semantic constructs reduce the impact of changes on a protocol model of a healthcare

insurance?

This research question is detailed in the following sub questions:

1. Which flexibility is needed for a healthcare insurance model? In other words: which

types of changes occur in the healthcare insurance domain?

2. Which semantic constructs of Protocol Modelling support the needed flexibility?

3. How can the semantic construct best be applied?

Next sections each deal with a sub question.

8.1.1. Flexibility needed in a Healthcare Insurance Model

Section 6.1 “Overview and Classification of Changes” classifies changes in the Base

Insurance since 2006 as one of:

1) Change in covered care procedures. Two subclasses are defined:

a) Coverage Added. A care procedure that was uncovered previously, has become a

covered procedure.

b) Coverage Removed: A care procedure that was covered previously, has become

covered.

2) Condition Changed: A care procedure that was covered before, is still covered but the

conditions for coverage have become more restrictive or less restrictive.

3) Change in benefit calculation. The algorithm to calculate the benefit amount of a claim

has changed.

4) Other Change: Changes that do not belong to one of the three categories above.

From Table 6 Overview of Changes, it can be concluded that:

 Changes in covered care procedures occur each and every year.

 Changes in conditions occur in most years. Most changes concern changes in age

limits.

 Change in benefit calculation in fact happens once: when the mandatory deductible is

introduced in 2008. In later years only the deductible mount is increased.

 Other change: the only change of this type is the introduction of a personal budget for

visual aids. This is outside the scope of the model as this does not impact claims

processing.

So, to answer the first research sub question, a healthcare insurance model needs to supply the

following flexibility:

 Flexibility in addition and removal of covered care procedures.

 Flexibility in conditional coverage. Conditions of different types (age, treatment) need

to be supported. Conditions need to be parameterized.

 Flexible deductible. For the Base Insurance an age and care procedure dependent

mandatory deductible should be supported.

53

8.1.2. Flexibility Support in Protocol Modelling

This section describes different ways to construct flexible protocol models. For more details,

see section 4.5 “Modelling Adaptation using Protocol Modelling”.

Parameterization can be implemented in a protocol model by defining separate parameter

objects. The parameter values can be added as attributes to the parameter objects. If needed, a

separate Functional Management role can be added to set/change parameter values. Parameter

objects can be related to operational objects or retrieved in callback code. See section 4.5.1

for details.

User Exits can be implemented in a protocol model by firing an event from a predefined place

in the model. Customers can implement the event handling in a callback. See section 4.5.2 for

details.

Composition and derived attributes and states are semantics constructs that also can increase

model flexibility:

 With composition, one can define more complex machines from simpler ones. This

enables the extension of a model by including new machines.

 Derived attributes and states can abstract over implementation details and thus become

a dependency wall.

To answer the second research sub question: flexibility can be incorporated in the protocol

model by using:

 Parameterization.

 User Exits.

 Composition.

 Derived Attributes and States.

8.1.3. Flexibel Protocol Model of Healthcare Insurance

This section describes how the flexibility support described in the previous section, is used to

create a flexible healthcare insurance model. This model is described in detail in chapter 5

“Design Protocol Model for Base Insurance 2006”.

The information in this section as a whole is the answer to the third research sub question.

Flexibility in addition and removal of covered care procedures is implemented in the model

by the objects Product, Coverage and Care Procedure. A Product consists of multiple

Coverages and a Coverage consists of multiple Care Procedure. So addition and removal of

coverages requires only the change of model data by the Functional Management Role.

Flexibility in conditional coverage is implemented in the model by defining behaviours for

each different condition:

 AgeLimit is used for conditional coverage depending on the age of the member.

 TreatmentLimit is used for conditional coverage depending on the sequence number

of the treatment.

 MaximumNumberLimit is used for coverage up to a maximum number of procedures.

These behaviours can be included by (subtypes of) Coverage objects. Inclusion of multiple

behaviours in a single Coverage object is possible, leveraging the composition semantics of

Protocol Modelling. Necessary attributes are added to support parameterization. For example

AgeLimit has attributes “Age From” and “Age To”.

The conditions are checked in the context of a claim by Condition behaviours. Each condition

behaviour is related to a Limit behaviour so it can get the required parameters. For example

AgeCondition is related to AgeLimit.

54

Algorithmic flexibility is implemented for both Price- and Benefit calculation. These

calculations can differ per coverage, depending on the included behaviour. For example

PolicyCoverageFull includes FixedPrice and BenefitFull, whereas PolicyCoveragePercentage

includes FixedPrice and BenefitPercentage. New price- and benefit calculations can be added

by defining new behaviour and include them in the appropriate PolicyCoverage. So the price-

and benefit calculations are implemented as User Exits customers can change themselves.

The mandatory deductible required an extension of the model. The model supports a

mandatory deductible using a variable amount and age limit. Per coverage it can be indicated

whether the procedures in the coverage are subject to a mandatory deductible.

8.1.4. Impact of changes

The changes of the base insurance from 2007 until 2011 were exposed to the model. Only the

introduction of the mandatory deductible required a structural change of the model. The

required structural change involved adding new attributes and behaviours. Existing

behaviours and attributes were (almost) not impacted at all.

All other changes could be implemented by changing the model configuration only. See Table

7 Change Types and Model Impact.

So it is concluded that the developed model is flexible and supports common changes in

healthcare insurances:

 Changes in covered care procedures.

 Changes in conditions of coverage.

The initially developed model could easily be extended to support the new concept of a

mandatory deductible.

To answer the research question: the flexibility of the model was achieved by:

1. Parameterization.

2. User Exits for Price- and Benefit calculation.

3. Composing conditions and price- and benefit calculations into PolicyCoverage

objects.

The first two options can also be achieved by other modelling techniques. The third option of

composition leverages the composition semantics of Protocol Modelling. This enables the

reuse of model elements.

8.2. Discussions

8.2.1. Validity

The developed and extended model only implements the Base Insurance. Also, only the

changes in the Base Insurance are classified and their impact on the model is determined. It is

however expected that many of the findings in this research also apply to other healthcare

insurances in- and outside of the Netherlands:

 The developed model does not contain any Base Insurance specific elements, but uses

generalized abstractions.

 It is expected that changes in other healthcare insurance products have similar

classifications.

More research is however needed to validate the second point.

Besides appliance in healthcare insurances in other countries, concepts of this model could

also be used in other insurance types like travel insurances. More research is needed to

55

discover the different types of insurances and how the concepts defined in this research also

apply to those other insurances. It is expected that some insurance types are more similar to

healthcare insurance than others. A factor might be the policy-claim ratio. For healthcare

insurance, many claims are created per policy, whereas for life insurances at most one claim

per policy can exist.

8.2.2. General Modelling Techniques

This research also resulted in the implementation of parameterization and user exists in a

protocol model. These techniques are generic and can be applied to all type of models. The

implementation of the claims processing steps as described 5.4.4.4 “Price- and Benefit

calculation” uses the Template Pattern (Gamma et al, 1995): the order and number of steps is

fixed, but implementation can vary (per coverage in this case). This is also a technique that

can be applied everywhere.

8.2.3. Guidelines

As said in the previous section, model flexibility is implemented using (among others)

composition and derived attributes and states. At least derived states and composition are

specific to Protocol Modelling. No guidelines or standards exist that define how these

concepts should be applied to real life problems. Guidelines and standards are needed to

increase the acceptance of Protocol Modelling. More research is needed to come up with such

standards and guidelines.

8.2.4. Completeness

The developed model is by no means functional complete. Important parts are missing:

 The ability to handle multiple insurance products. Most members not only have the

Base Insurance, but also multiple supplementary insurances.

 The ability to handle multiple members on a policy.

 Authorizations. For many care procedures, an approval is needed beforehand. The

existence of the authorization is checked when the costs are claimed.

More research is needed to analyze the requirements of these parts and extend the developed

model.

56

9. References

Ahituv, N., Neumann, S., & Zviran, M. (2002). A System Development Methodology for

ERP Systems. Journal of Computer Information Systems, Vol. 42, (3), Spring 2002, 56-67.

Boehm (2002): Get Ready for Agile Methods, with Care. Computer Volume 35 Issue 1,

January 2002, 64–69.

Brehm L., Heinzl A., & Markus M.L. (2000). Tailoring ERP Systems: A Spectrum of

Choices and their Implications. Proceedings of the 34th Hawaii International Conference

on System Sciences. Maui, Hawaii, 3-6.

Xu, L., & Brinkkemper, S. (2005). Concepts of Product Software: Paving the Road for

Urgently Needed Research. First International Workshop on Philosophical Foundations of

Information Systems Engineering, LNCS, Springer-Verlag.

Carney, D. (1997). Assembling Large Systems from COTS Components: Opportunities,

Cautions, and Complexities. SEI Monographs on Use of Commercial Software in Government

Systems,

Software Engineering Institute.

France, R., & Rumpe, B. (2007). Model-driven Development of Complex Software: A

Research

Roadmap. Proceedings of the International Conference on Software Engineering, 37-54.

Hailpern, B., & Tarr, P. (2006). Model-driven development: The good, the bad, and the ugly.

IBM Systems Journal 45 (3), 451–461.

Machado, J.P., & Menezes P.B. (2006). Defining Atomic Composition in UML

Behavioral Diagrams. Journal of Universal Computer Science, 12(7), 958–979.

Mellor S.J., Clark A.N., & T. Futagami (2003), Model-Driven Development.

IEEE Software, no. 5, 14-18.

Morisio M., & Torchiano M. (2002). Definition and classification of COTS: a proposal. 1st

International Conference on COTS-Based Software Systems (ICCBSS)..

McNeile, A., & Roubtsova, E. (2009). Composition Semantics for Executable and Evolvable

Behavioural Modeling in MDA. BM-MDA'09. Proceedings of the 1st Workshop

on Behaviour Modelling in Model-Driven Architecture, 1-8.

McNeile, A., & Simons N (2006). Protocol Modelling. A modelling approach that supports

reusable behavioural abstractions. Software and System Modeling, 5(1), 91-107.

McNeile, A. & Roubtsova, E (2008). Executable Protocol Models as a Requirements

Engineering

Tool. Proceedings of the 41st Annual Simulation Symposium, 95–102.

McNeile, A.,& Roubtsova, E. (2008-2). CSP parallel composition of aspect models.

Proceedings of the 2008 AOSD workshop on Aspect-oriented modeling, 13–18.

57

McNeile, A., & Simons, N. (2004). Mixin Based Behaviour Modelling. Proceedings of the

6th International Conference on Enterprise Information Systems (3), 79-183.

Memmel, T., Bock, C., & Reiterer, H.(2007). Model-driven prototyping for corporate

software spe-cification. Proceedings. of the Engineering Interactive Systems Conference

EIS’2007.

Menzis. (2006). Vergoedingenoverzicht. Retrieved November 1, 2010, from

http://www.tcfzorg.nl/pdf/vergoedingenoverzicht_menzis.pdf

Menzis, (2007). Wijzigingen in de polisvoorwaarden Basisverzekering, Aanvullende

Verzekeringen en Tandartsverzekeringen. Retrieved November 1, 2010, from

http://www.polisvoorwaardenonline.nl/docs/polisvoorwaarden/menzis/zorg/128235_622_116

3071181503-br-1115-1106_wijzigingen_bv_av_tv.pdf

Metamaxim. Modelscope 2.0. Modellers’ Guide. Retrieved June 1, 2010, from

http://www.metamaxim.com/

OMG (2009-2). Uni¯ed Modeling Language, Superstructure, v2.2. OMG Document

formal/09-02-02 Minor revision to UML, v2.1.2. Supersedes formal 2007-11-02, 2009.

Roubtsova, E., Wedemeijer, L., Lemmen, K., & McNeile, A. (2009). Modular Behaviour

Modelling of Service Providing Business Processes. Proceedings of the International

Conference on Enterprise Information Systems, 338-341.

Rumpe, B. (2004). Agile modeling with the UML. Radical innovations of software and

systems engineering in the future. 9th International Workshop.

Sawyer, S. (2000). Packaged software: Implications of the differences from custom

approaches to software development. European Journal of Information System, 9, 47–58.

Selic, B (2003): The pragmatics of model-driven development. IEEE Softw., 19–25. (Special

issue on model-driven development.)

Vektis. Prestatiecodelijsten. Beschikbaar op http://tog.vektis.nl/

Wortmann, J.C., Kusters, R.J.: Cursus Bedrijfsprocessen (B44322)

Y. Yang, J. Bhuta, D. Port, and B. Boehm, Value-based processes for COTS-based

applications, IEEE Software (July/August 2005), 54–62.

Zorgverzekering (2011) http://www.zorgverzekering-informatie.nl/index.php/wijzigingen-

zorgverzekering

58

10. Appendix 1: Usage of Models

Wortmann and Kusters define a model as:

A formal representation of a limited number of aspects of reality developed for a specific

purpose.

Some aspects in this definition draw attention:

1. It is a formal representation. So the meaning of elements of the model is defined.

2. It is a presentation of a limited number of aspects. Which aspects of reality are

included in the model and which are not included, depends on the goal of the model.

A model can be used to assess characteristics of a future system, even before it is built. A

model also enables knowledge transfer of a design (Milicev, 2009).

By modelling, four goals can be reached (Booch, 1999):

1. Visualisation. The model visualizes current and future operation of a system.

2. Specification. The model defines structure and behaviour of a system.

3. Construction. The model behaves as a template for the construction of the system.

4. Documentation. The model stores design decisions.

For a software development organization, models can be used internally and externally:

 Internally for the transfer of requirements and specifications between various project

roles like analysis, design, build and test.

 Externally in the communication with new and existing customers.

It is important that the model can be understood by all stakeholders.

For reaching the four goals, models are used as engineering model in lots of technical

disciplines like civil and electrical engineering.

Models can also be used for the construction of software. An important difference with other

technical disciplines: the model and the resulting system are constructed of the same

“material”, software.

If the model is a formal specification, the model can be executed after a transformation or

interpretation step. The model is called executable in that case. Model Driven Development

deals with the development of software using modelling languages and modelling tools

(Milicev, 2009).

Bernhard Rumpe (2004) differentiates between two current trends that influence software

engineering:

1. Model Driven Development, where the model is central.

2. Agile Development, where source code is central.

One could consider those trends as opposites, but it is also possible and desirable to combine

elements of both trends.

This is also the opinion of Barry Boehm, talking about plan-driven and agile software

development methods (Boehm, 2002):

Although many of their advocates consider the agile and plan-driven software development

methods polar opposites, synthesizing the two can provide developers with a comprehensive

spectrum of tools and options.

According to Boehm, plan-driven development, and also the usage of models, is most

appropriate for projects with these characteristics:

 The requirements are stable and known at an early stage.

 The architecture is developed for current and future requirements.

 Bigger teams and products.

 Required reliability.

59

10.1.1.1. Model Driven Prototyping

As said before, all stakeholders must be able to understand a model. Memmel, Bock and

Reiterer (2007) point out that this is not the case with the widely used UML: “Apart from

software engineers, other stakeholders usually cannot understand UML”.

According to them, text based methods to gather and document requirements lead to

frustrating communication problems between business- and development teams.

They suggest preventing these problems by using prototypes during requirements gathering.

These prototypes are model-based.

These prototypes also assist when the system is ultimately built: “to build ... a system with the

help of a running simulation (prototype) is much easier than doing it from scratch based on

textual descriptions.”

10.1.1.2. Model Driven Development

Model Driven Development (MDD) goes a step further compared to Model Driven

Prototyping: the model is either automatically translated into a working system, or the model

is the working system itself.

A number of developments have lead to Model Driven Development:

 Increased complexity of platforms like J2EE and .NET. This increase can‟t be handled

anymore by existing general-purpose languages. This leads to a complexity ceiling.

 Increased complexity of the software to be developed (France & Rumpe, 2007).

France and Rumpe mention a problem-implementation gap: there is a big gap between

problem domain and software implementation domain. MDD can play a role in bridging the

gap by hiding developers from implementation details.

Mellor, Clark and Futagami (2003) see these benefits for MDD:

 Enables reuse on domain level

 Increases quality of software by continuously improved models.

 Lowers costs by automating software development processes.

 Lengthens lifetime of applications by simplifying migrations to other platforms.

France and Rumpe also mention testing and simulation using models.

MDD can be used in several ways. Hailpern and Tarr (2006) divide the MDD community into

three categories (with increased order of model penetration):

1. Sketchers model only a part of a system for communication and documentation

purposes.

2. Blueprinters make detailed models of a design and transfer them to implementers.

3. Model programmers make models with executable semantics.

According to Selic (2003), MDD must meet the following conditions:

 MDD must result in complete programs, not code skeletons only.

 Automatic verification of models must be possible.

60

11. Appendix 2: The Dutch Base Insurance (2006)

Dutch law defines what is covered by the Base Insurance, but the government does not

publish an easy to understand overview of the coverages. So the policy conditions of

insurance provider Menzis (Menzis, 2006) are used as basis for the design of the model. The

highlighted lines are used for defining a use case in section 5.1.2 ”Use Cases”. As this is a

„source‟ document, it is presented in the original Dutch language. For terminology used in use

cases, a translation is provided in the second section of this appendix.

Table 8 Vergoedingenoverzicht Basisverzekering 2006

Behandeling Vergoeding

Alternatieve geneesmiddelen

Ambulancevervoer 100%

Audiologisch centrum 100%

Bevalling en Kraamzorg

- Delivery poliklinisch 100%

(medisch noodzakelijk)

- Bevalling poliklinisch - verloskundige zorg: 100%

(niet-medisch noodzakelijk) - polikliniek: gedeeltelijke vergoeding

- Communicatiemiddel

- Kraampakket

- Kraamzorg 100% (er geldt een eigen bijdrage)

- Kraamzorg na adoptie

- Kraamzorg na couveuseopname

- Meerlingenuitkering

Bezoeks- en verblijfskosten

- Logeerhuizen

- Ziekenhuis/revalidatiecentrum

Buitenland

- Spoedeisende zorg 100%

- Niet-spoedeisende zorg 100%

- Hulpverlening door Alarmcentrale

- Vervoer naar Nederland

- Vervoer bij overlijden

Chronisch intermitterende beademing 100%

Dieet advisering Max. 4 uur behandeling p.kljr

Dieetpreparaten 100%

Erfelijkheidsonderzoek 100%

Ergotherapie Max. 10 behandeluren p.p.p.kljr

Farmaceutische zorg 100% (conform Regeling Zorg-

 verzekering, vergoedingssysteem GVS)

Fertiliteitsbehandelingen

- IVF and ICSI 2e en 3e behandeling

- IUI-OI (onderzoek en

specialistenkosten)

- Medicatie fertiliteitsbehandelingen 100%

61

Behandeling Vergoeding

Fysio- en oefentherapie Cesar/

Mensendieck

- Gecontracteerde therapeut 100% vanaf behandeling 10 bij

 chronische indicaties

- Niet-gecontracteerde therapeut 100% vanaf behandeling 10 bij

 chronische indicaties conform

 Verzekeringsreglement Zorg

Gezondheidscursussen

Handicap, vakantie en begeleiding

Herstellingsoorden

Huidtherapieën

- Acnétherapie

- Camouflagetherapie

- Camouflagemiddelen

- Epilatie

- Psoriasisdagbehandeling

- UVB-lichttherapie

Huisarts 100%

Hulpmiddelen

- Hulpmiddelen

100% (conform regeling Zorgverzekering, voor
bepaalde hulpmiddelen geldt een maximale
vergoeding of eigen bijdrage)

- Alarmeringsapparatuur

(sociale indicatie)

- Bewakingsmonitor voor baby’s

- Brillenglazen/contactlenzen

1) Alle sterktes

2) Arrangementen:

a) Specsavers (brillen en

contactlenzen)

b) Hans Anders (brillen)

c) Het Huis (brillen)

U kunt max. 1x per 2 jaar gebruik
maken van een vergoeding of van
een arrangement.

- Hoortoestellen
- Plaswekker

- Pruiken
- Orthopedisch schoeisel
- Orthopedische steunzolen

- Softbraces

- Steunpessarium

Kinderopvang

62

Behandeling Vergoeding

Leukemie bij kinderen 100%

Logopedie 100%

Manuele lymfedrainage door 100%

Huidtherapeut 100%

Orgaantransplantatie

Overgangsconsulente

Patiëntenverenigingen

- Lidmaatschappen

- Therapieën

Podotherapie

Poliklinische zorg 100%

Preventie

- Algemene Check-up

- Griepvaccinatie

- Reizen naar het buitenland

- Vaccinatie Hepatitis-B

Psychologische zorg

Psychotherapie AWBZ

Revalidatie 100%

Second opinion

Sport Medisch Advies

Sterilisatie

Stottertherapie

Thuiszorg AWBZ

Trombosedienst 100%

Vakantiereizen Rode Kruis of

Zonnebloem

Vervangende mantelzorg tijdens

Vakantie

Verbandmiddelen 100%

Verpleegartikelen AWBZ

Voorbehoedsmiddelen

(anticonceptiva)

Ziekenhuisopname 100%

Zittend ziekenvervoer Indien voldaan aan criteria,
max. € 0,22 per km. of laagste tarief
openbaar vervoer, met een eigen
bijdrage van € 83,-

Zorgprogramma’s (speciale patiëntengroepen)

63

Behandeling Vergoeding

Tandheelkundige hulp tot 18 jaar

- In bijzondere gevallen 100%

- Kaakchirurgische behandeling 100% (na machtiging)

- Tandheelkundige implantaten 100% (na machtiging)

- Tandheelkundige zorg aan verzekerden met
een lichamelijk of verstandelijk handicap

100%

- Prothesen 100%

- Kronen, bruggen en gegoten vullingen

- 1e consult (jaarlijkse controle) 100%

- 2e en volgende consult 100%

- Incidenteel consult 100%

- Röntgenfoto’s 100%

- Chirurgische ingrepen 100%

- Verdoving 100%

- Wortelkanaalbehandeling 100%

- Fluoride behandeling vanaf 6 jaar 100%

- Tandsteen verwijderen In bijzondere gevallen: 100%

- Vullingen 100%

- Parodontologie 100% (na machtiging)

- Gnathologie 100% (na machtiging)

- Orthodontie 100%

Tandheelkundige hulp vanaf 18 jaar

- In bijzondere gevallen 100%

- Kaakchirurgische behandeling 100% (na machtiging)

- Tandheelkundige implantaten 100% (na machtiging)

- Mesostructuctuur en prothese op implantaten 100%

- Tandheelkundige zorg aan verzekerden met
een lichamelijk of verstandelijk handicap 100%

- Prothesen a) 75% (uitgezonderd reparatie en rebasen
waarvoor 100% geldt)

a) Volledig

b) Partieel

c) Frame

- Kronen, bruggen en gegoten

vullingen

- 1e consult (jaarlijkse controle)

- 2e en volgende consult

- Incidenteel consult

- Röntgenfoto’s

- Chirurgische ingrepen

- Verdoving

- Wortelkanaalbehandeling

- Tandsteen verwijderen

- Vullingen

- Parodontologie

- Orthodontie In bijzondere gevallen: 100%

11.1. Translation of Dutch terminology

The table below translates Dutch terminology that is being used for the definition of use

cases.

Table 9 Translation of Dutch terminology

Dutch English Used in

Alternatieve geneesmiddelen Alternative Medicine Use Case 1

Bevalling poliklinisch (niet-

medisch noodzakelijk)

Inpatient Delivery (without

diagnosis)

Use Case 5

64

Kraamzorg Maternity Care Use Case 7

Dieetadvisering Nutritional Counselling Use Case 4

IVF en ICSI IVF Use Case 8

Huisarts General Practitioner Use Case 2

Tandheelkundige hulp Dental Care Use Case 3

Fysiotherapie Physiotherapy Use Case 6

Prothesen Prosteses Use Case 9

65

12. Appendix 3: Changes in the coverage of the Base Insurance

This appendix describes the changes of the Base Insurance in from its start in 2007 onwards.

Each paragraph describes the changes of one year.

12.1. Base Insurance Changes in 2007

The information in this section is based on (Menzis, 2007).

12.1.1. Added Coverage

The coverage is extended with:

1) Prenatal screening for congenital defects by echoscopy in the second trimester of the

pregnancy, if the member is younger than 36 and there is a diagnosis.

2) The first IVF attempt per planned pregnancy.

3) Abdominoplasty (abdominal reduction by plastic surgery);

4) The possibility of a personal budget for visual aids in the case of a serious visual

handicap.

Remarks:

 1) is implemented by using different care procedure codes for members of younger

than 36 without diagnosis.

 4) is out of scope for the model: when a personal budget applies, the costs are not

claimed anymore.

12.2. Base Insurance Changes in 2008

The information in this section is based on (Zorgverzekering, 2011).

12.2.1. Added Coverage

The coverage is extended with:

1. Birth Control regardless of age.

2. Dental Care for members younger than 22.

3. Five hours of additional Maternity Care.

4. Mental Healthcare.

12.2.2. Mandatory Yearly Deductible

A mandatory Yearly Deductible of 150 Euro is defined. Medical costs up to this amount are

not reimbursed by the insurance company. The Yearly Deductible applies for members of 18

years and older.

The yearly deductible does not apply to the following care procedures:

 Visits to General Practitioners.

 Obstetrical care.

 Maternity Care.

 Dental care for people younger than 22.

Chronically ill and disabled people are financially compensated. This group is selected by

looking at specific medication use.

12.3. Base Insurance Changes in 2009

The information in this section is based on (Zorgverzekering, 2011).

66

12.3.1. Added Coverage

The coverage is extended with:

1. The diagnosis and treatment of severe dyslexia for children born after 1 January 2001.

The school functions as a gatekeeper
5
.

12.3.2. Reduced Coverage

No longer covered are:

1. Lift Chairs for elderly and disabled people.

2. Hypnotics and tranquillizers.

12.3.3. Increase of Mandatory Yearly Deductible

The mandatory yearly deductible is increased to 155 Euro.

12.4. Base Insurance Changes in 2010

The information in this section is based on (Zorgverzekering, 2011).

12.4.1. Added Coverage

The coverage is extended with:

1. Organ transplantation outside the European Union/EEA (under conditions
3
).

2. Mandibular advancement devices for treatment of obstructive sleep apnea syndrome
3
.

12.4.2. Removed Coverage

1. Compensation for the mucolytic agent acetylcysteine.

12.4.3. Increase of Mandatory Yearly Deductible

The mandatory yearly deductible is increased to 165 Euro.

12.5. Base Insurance Changes in 2011

The information in this section is based on (Zorgverzekering, 2011).

12.5.1. Reduced Coverage

No longer covered are:

1. Birth Control (except for women younger than 21 years).

2. Dental Care for 18 to 21-year-olds.

3. Compensation for Durable Medical Equipment.

4. Simple extractions by oral surgeons.

12.5.2. Increase of Mandatory Yearly Deductible

The mandatory yearly deductible is increased to 170 Euro.

5
 Authorization is required before costs can be claimed.

67

13. Appendix 4: Explanation of graphical symbols

Figure 21 Symbols used in Protocol Models

68

14. Appendix 5: UML Behaviour Models

This appendix provides a limited overview of the possibilities UML offers to create

executable behaviour models. A complete description of UML is outside the scope of this

research. Only a few important points are mentioned that are relevant to the modelling of the

Base Insurance. Statements about UML in this chapter are based on version 2.2 of the UML

specification (OMG, 2009-2).

1. Section “UML types of Behaviour Models” summarizes the different UML behaviour

models.

2. Section “UML State Machine Semantics” describes the semantics of UML state

machines.

3. Section “UML State Machines and Transactions” describes why modelling

transactional behaviour is essential for business information systems and why Protocol

Modelling is better suited to do that compared to UML State Machines.

14.1. UML types of Behaviour Models

UML offers a number of modelling techniques that are meant to model behaviour:

 Interaction models describe the communication between instances of objects.

 Activity Models describe the sequence and (conditional) execution of steps in an

activity.

 State machine models describe the status transitions of an object as a response to

events.

McNeile and Roubtsova assess these modelling techniques on the basis of suitability for

creating an executable model (McNeile & Roubtsova, 2009):

 Interaction models describe scenarios. They give examples of possible interaction

patterns. For an executable model, however, it is important that all scenarios can be

defined. This is not possible with interaction models. This is also confirmed by the

UML specification: “The traces that are not included are not described by this

Interaction at all, and we cannot know whether they are valid or invalid.”

 Activity models are basically executable. However, they describe “lower-level

behaviors, rather than which classifiers [i.e., classes] own those behaviors” (UML).

They are not meant to model behaviour on object level.

 State machine models “can be used for modelling discrete behaviour through finite

statetransition systems” (UML).

So state machine models are best suited for modelling the complete behaviour of objects. The

next paragraph explains their semantics.

14.2. UML State Machine Semantics

UML has two types of state machines:

1. Behavioural state machines. “State machines can be used to specify behaviour of

various model elements” (UML specification).

2. Protocol state machines. “Protocol state machines are used to express usage

protocols”.

It‟s obvious that behavioural state machines are meant to model behaviour. Their semantics

can be summarized as follows:

 A state machine has a set of states.

 An event can result in the transition of the state machine to a new state.

 A guard is a condition attached to a transition. The transition only occurs when the

guard has the true value. A guard is not allowed to have a side effect.

 States can be hierarchical: a composite state consisting of substates.

69

 A state machine can have multiple regions: Each region has its own states and

transitions. The state of the state machine is the combined set of states of the regions.

Behavioural state machines can respond in different ways to events:

 The current active state has an enabled transition for the event. The event will result in

a state transition to the new state.

 The state machine can defer the processing of the event to some later moment.

 The state machine can ignore the event.

These semantics make UML behaviour state machines less suitable for use in the domain of

Business Information Systems, where transactional integrity is important. The next section

will explain why.

14.3. UML State Machines and Transactions

In Business Information Systems, an event impacts multiple objects in many cases. It is

important that processing of the events either results in:

 All objects going to their new states.

 All objects remaining in their original state when one or more of the involved objects

fails to process the events.

This is called transactional integrity. An obvious example is the transfer of money between

bank accounts where it should never happen that money „is created‟ or „disappears‟.

Transactional integrity is also important when processing claims. Consider the following

example:

 The event „Submit Claim‟ causes the claim object to go to the Submitted state.

 A claim can only go to the Submitted State when it‟s not a duplicate. (Insurance

companies have fraud detection in place to detect the illegal double declaration of the

same medical treatment).

 The event „Submit Claim‟ causes the increment of the state variable Deductible

Amount of the PolicyDeductible object. When the Deductible threshold is reached, the

Policy Object transitions to the Deductible limit reached.

See the UML state machines below:

Figure 22 UML state machine for Claim

70

Figure 23 UML state machine for PolicyDeductible

So the event „Submit Claim‟ event impacts the objects Claim and PolicyDeductible. Because

of the required transactional integrity, when a duplicate claim is submitted, the claim object

should not change its state, nor should the PolicyDeductible object change.

This transactional behaviour cannot be modelled in an UML state machine. A UML state

machine has the choice to accept, ignore or defer an event but they do that independent of

each other. In this example, Policy Deductible should only accept the Submit Claim when the

Submit Claim event in Claim leads to a transition to the Submitted state. Using UML state

machines, this can be implemented by:

 Also doing the isDuplicate check in the PolicyDeductible. This leads to unacceptable

redundancy.

 Only present Submit Claim events to the Claim and PolicyDeductible state machines

for non-duplicate claims. This moves the whole burden of business rules checking to

calling clients.

As can be seen, both options have significant and unacceptable disadvantages.

Machado and Menezes also report that “UML seems to lack compositional constructs for

defining atomic actions/activities/operations” (Machado and Menezes, 2006)

These disadvantages disappear when using Protocol Modelling where a Protocol Machine

also can refuse an event. When any of the involved protocol machines refuses the event, all of

the protocol machines remain in their original state. So the refusal of an event results in

„rolling back the transaction‟. The ability to refuse an event is essential for transactional

business systems:

“Without the ability to refuse events, state machines cannot describe event protocols in

situations where an event must be accepted by multiple objects, which is usual in

transactional business systems” (McNeile and Simons, 2006).

So it is included that the semantics of Protocol Machines as described in section 4.4 “Protocol

Modelling Semantics” make Protocol Machines better suited than UML state machines to

describe the behaviour of Business Information Systems.

71

15. Appendix 6: Model Reference

This appendix gives detailed descriptions of the behaviours and objects of the developed

model.

15.1. Behaviour AgeCondition

This behaviour only accepts event ProcessClaim if the age of the member at the claim date is

within the defined age limits.

15.2. Behaviour AgeLimit

This behaviour must be added to all coverages where the age of the member determines the

coverage.

Table 10 Behaviour AgeLimit

Attribute Description Example

Age From Lower bound of allowed age 0

Age To Upper bound of allowed age 18

15.3. Behaviour Benefit

This behaviour stores the benefit amount calculated by the claims processing.

Table 11 Behaviour Benefit

Attribute Description Example

Benefit Amount Benefit Amount 10.00

15.4. Behaviour BenefitCoPayment

This behaviour must be included by all policy coverages where a co-payment should be

deducted.

Table 12 Attributes of BenefitCoPayment

Attribute Description Example

Benefit Name A derived “technical” attribute. See

section “Modelling of the application of

coverage rules”.

Co-payment Amount The co-payment per unit. 261.50

15.5. Behaviour BenefitFull

This behaviour must be included by all policy coverages that cover the full price of the care

procedure.

Table 13 Attributes of BenefitCoPayment

Attribute Description Example

Benefit Name A derived “technical” attribute. See

section “Modelling of the application of

coverage rules”.

15.6. Behaviour BenefitPercentage

This behaviour must be included by all coverages that only cover a percentage of the cost.

Table 14 Attributes of BenefitPercentage

Attribute Description Example

Benefit Name A derived “technical” attribute. See

72

section “Modelling of the application of

coverage rules”.

Percentage The percentage that is covered 75

15.7. Object CareProcedure

A care procedure is a definition of a medical treatment.

Table 15 Attributes of CareProcedure

Attribute Description Example

Code Code 01/12002

Description Description

Price Fixed price 13.50

15.8. Behaviour CareProcedureCondition

This behaviour only accepts event ProcessClaim if the care procedure of the claim is a

member of the care procedure group of the policy coverage.

15.9. Behaviour CareProcedureGroup

A CareProcedureGroup models a set of care procedures. CareProcedureGroup is modelled

separately to enable reuse in other cases where a set of procedures must be handled. This does

not occur in this model however.

CareProcedureGroup has no attributes.

15.10. Object CareProcedureGroupMember

This object relates a care procedure to a care procedure group.

Table 16 Attributes of CareProcedureGroupMember

Attribute Description Example

CareProcedureGroup The care procedure group General

Practitioner Care

Procedure The procedure 01/12002

Description A derived attribute to display context

information.

General

Practitioner Care-

01/12002

15.11. Object Claim

The table below shows the claim attributes that are entered by a member when creating a

claim.

Table 17 Attributes of Claim, entered by a member

Attribute Description Example

Policy The policy used to claim. 123-456-789

Customer Reference Label customer can assign to claim Dentist visit

Care Procedure The received medical treatment 01/12002

Number Number of units 2

Service Date Date of medical treatment 1 February 2006

Treatment Sequence number of treatment 2

Other Claim attributes are populated during the processing of the claim. See table below:

Table 18 Derived and calculated attributes of Claim

Attribute Description Example

Price The price of the care procedure 10.00

73

Total Amount Derived attribute: Number * Price 20.00

Member Age Age of the member at service date 42

Processing Info Textual information about the

processing status of the claim

Completed

15.12. Behaviour CoPayment

This behaviour stores the co-payment amount calculated by the claims processing.

Table 19 Behaviour CoPayment

Attribute Description Example

CoPaymentAmount Co-payment Amount 10.00

15.13. Behaviour Coverage

The first two aspects of the model defined in 5.3.4 “Mathematical Model of Benefit Rules”

are modelled in behaviour Coverage. See table below. Behaviour Coverage models a set of

care procedures that are covered.

Table 20 Attributes of Coverage

Attribute Description Example

Product Product the coverage belongs to Base Insurance

Coverage includes the behaviour CareProcedureGroup. All coverages of the Base Insurance

are selected based on the care procedure of the claim, so all coverages include behaviour

Coverage. Other aspects, like additional conditions and benefit calculation can be added by

including other behaviours (mixin approach). See next sections for examples.

15.14. Object CoverageAge

This object models a coverage with has an age condition: the claim is only covered when the

age of the member at the claim date is within the specified limits.

Table 21 Attributes of CoverageAge

Attribute Description Example

Name The name of the coverage Dental Care

Includes behaviours:

 Coverage

 AgeLimit

15.15. Object CoverageCoPayment

This object models a coverage for which a co-payment is deducted.

Table 22 Attributes of CoverageCoPayment

Attribute Description Example

Name The name of the coverage Inpatient delivery

Includes behaviours:

 Coverage

 BenefitCoPayment

15.16. Object CoverageFull

This object models a coverage that covers the full price of the care procedure.

Table 23 Attributes of CoverageFull

Attribute Description Example

Name The name of the coverage General

74

Practitioner Care

Includes behaviours:

 Coverage

15.17. Object CoverageMaximumNumber

This object models a coverage that covers up to a maximum number of units.

Table 24 Attributes of CoverageMaximumNumber

Attribute Description Example

Name The name of the coverage. Nutritional

Counselling

Includes behaviours:

 Coverage

 MaximumNumberLimit

15.18. Object CoverageMaximumNumberCoPayment

This object models a coverage which both a co-payment amount and a maximum.

Table 25 Attributes of CoverageMaximumNumberCoPayment

Attribute Description Example

Name The name of the coverage Nutritional

Counselling

This object illustrates the mixin/multiple-inheritance capabilities of protocol modelling.

The combination of maximum covered number of units and co-payment is implemented by

including both the behaviours MaximumNumberLimit and BenefitCoPayment.

So this object includes the behaviours:

 Coverage

 MaximumNumberLimit

 BenefitCoPayment

15.19. Object CoveragePercentage

This object models a coverage that only covers a percentage of the cost.

Table 26 Attributes of CoveragePercentage

Attribute Description Example

Name The name of the coverage Prostheses

Includes behaviours:

 Coverage

 BenefitPercentage

15.20. Object CoverageTreatment

This object models a coverage for certain treatments only.

Table 27 Attributes of CoverageTreatment

Attribute Description Example

Name The name of the coverage IVF

Includes behaviours:

 Coverage

 TreatmentLimit

75

15.21. FixedPrice

This behaviour must be included by all policy coverages where the claim price is taken from

the care procedure.

Table 28 Attributes of FixedPrice

Attribute Description Example

PriceCalculatorName A derived “technical” attribute. See

section “Modelling of the application of

coverage rules”.

15.22. Behaviour MaximumNumberCondition

This behaviour only accepts event ProcessClaim if the total number of covered procedures

does not exceed the defined maximum.

15.23. Behaviour MaximumNumberLimit

This behaviour must be included by all coverages that cover up to a maximum number of

units.

Table 29 Attributes of MaximumNumberLimit

Attribute Description Example

Maximum Number The maximum number of covered units. 4

15.24. Object Person

A person is a human being known by the insurance company. A person may have (had) a

policy.

Table 30 Attributes of Person

Attribute Description Example

Person Name Name of the person Mrs. Johnson

Date of Birth Date of Birth of the person 25-01-1968

Age Age of the person now, derived from

Date of Birth

43

15.25. Object Policy

A policy grants a person the right to claim healthcare cost covered by the policy product.

Table 31 Attributes of Policy

Attribute Description Example

Policy Number Identifying number 123-456-789

Start Date Start Date of the policy 1 January 2006

End Date Derived attribute. Start Date + 1 year 31 December

2006

Product The product of the policy Base Insurance

Person The person enrolled to the policy John Johnson

Object Policy has only state Valid. This is a simplification of the real world.

15.26. Behaviour PolicyCoverage

A PolicyCoverage captures the state of a coverage in the context of a particular policy. A

PolicyCoverage has the following attributes:

Table 32 Attributes of PolicyCoverage

Attribute Description Example

76

Policy The policy the policy coverage belongs

to.

123-456-789

Coverage The related coverage. Dental Care

15.27. Object PolicyCoverageAge

Again this object is very similar to PolicyCoverageFull. However, the Process Claim event is

only accepted if the age of the member is within the defined age limits.

So besides CareProcedureCondition, PolicyCoverageAge also includes AgeCondition.

15.28. Object PolicyCoverageCoPayment

Again a variation of PolicyCoverageFull. It includes BenefitCoPayment. This Benefit object

subtracts a co-payment per claimed unit: benefit = number * (price – co-payment).

15.29. Object PolicyCoverageFull

This object is the simplest policy coverage object. Besides PolicyCoverage, it includes

behaviour BenefitFull. PolicyCoverageFull does not impose any additional condition to the

claim: if the care procedure matches one of the covered procedures, the full amount (number

* price) of the claim is paid.

15.30. Object PolicyCoverageMaximumNumber

This object covers the full amount (number * price), but only up to a maximum number of

units per policy. So it includes behaviour MaximumNumberCondition.

15.31. Object PolicyCoverageMaximumNumberCoPayment

This object covers up to a maximum number of units per policy, after deducting a co-

payment.

It is a “mixin” of PolicyCoverage, MaximumNumberCondition and BenefitCoPayment.

15.32. Object PolicyCoveragePercentage

This object is very similar to PolicyCoverageFull. Instead of BenefitFull, it includes

BenefitPercentage. BenefitPercentage gets the covered percentage from the associated

Coverage object and calculates the benefits: benefit = percentage * price * number/100.

15.33. Object PolicyCoverageTreatment

This behaviour includes a TreatmentCondition. A claim is only covered when the treatment

sequence number is within the defined limits.

15.34. Object Product

A product is a set of coverages of healthcare costs. See table below. Column Example shows

a typical value for attributes.

Table 33 Attributes of Product

Attribute Description Example

Product name Name of the product Base Insurance

15.35. Behaviour TreatmentCondition

This behaviour only accepts event ProcessClaim if the treatment sequence of the claim is

within the defined limits.

This behaviour must be included by all behaviours that only cover certain treatments.

77

Table 34Attributes of TreatmentLimit

Attribute Description Example

Treatment From Lower bound of covered treatment. 2

Treatment To Upper bound of covered treatment. 3

78

16. Appendix 7: Use cases

This appendix shows how the model handles the use cases of the Base Insurance.

16.1. Basic setup

Some steps to be performed in preparation are described in this paragraph.

16.1.1. Product

The Base Insurance product needs to be defined by actor Functional Management. See table

below:

Table 35 Definition product Base Insurance

Actor Functional Management

Object Product

Instance new Product

Event Create Product

Product Name Base Insurance

16.1.2. Persons

Some sample persons of different type are needed: a grown up and a child.

Table 36 Register grown up

Actor Relation Management

Object Person

Instance new Person

Event Register Person

Person Name Mrs. Johnson

Date of Birth 25 January 1968

Table 37 Register child

Actor Relation Management

Object Person

Instance new Person

Event Register Person

Person Name John Johnson

Date of Birth 5 April 1994

79

16.2. Use case 1: Not covered (Alternative medicine)

An example of an uncovered treatment is care procedure “90/931001”, “Acupuncture

treatment”. Define this care procedure as follows:

Table 38 Definition procedure “Acupuncture treatment”

Actor Functional Management

Object CareProcedure

Instance new CareProcedure

Event Create CareProcedure

Code 90/931001

Description Acupuncture treatment

Price 0

Price is irrelevant because the cost of this care procedure is not covered by the basic

insurance.

16.2.1. Create Policy

Mrs. Johnson creates a policy for the Base Insurance.

Table 39 Create Policy

Actor Relation Management

Object Policy

Instance new Policy

Event Create Policy

Person Mrs. Johnson

Product Base Insurance

Policy Number Policy-1

Start Date 1 January 2006

16.2.2. Submit claim

A claim needs to be created first:

Table 40 Create claim “Acupuncture treatment”

Actor Member

Object Claim

Instance new Claim

Event Create Claim

Policy Policy-1

Customer Reference Acu1

CareProcedure Acupuncture treatment

Number 1

Treatment 0 (default)

Date 1 January 2006

After creation, the claim can be submitted:

Table 41 Submit claim “Acupuncture treatment”

Actor Member

Object Claim

Instance Acu1

Event Submit Claim

Because alternative medicine is not covered, the claim will not get paid. The processing result

will be:

80

 Benefit Amount = “0.00”

 Processing Info = “Rejected: 0 coverages found”

81

16.3. Use case 2: Covered 100% (General Practitioner Care)

An example of general practitioner care is care procedure 01/12000, Short Visit. Define this

care procedure as follows:

Table 42 Definition procedure Short Visit

Actor Functional Management

Object CareProcedure

Instance new CareProcedure

Event Create CareProcedure

Code 01/12000

Description Short Visit

Price 9,00

16.3.1. Coverage

General Practitioner Care is 100% covered. So setup a CoverageFull object:

Table 43 Definition coverage General Practitioner Care

Actor Functional Management

Object CoverageFull

Instance new CoverageFull

Event Create CoverageFull

Product Base Insurance

Name General Practitioner Care

Add procedure 01/12000 as a procedure group member:

Table 44 Definition procedure group member Short Visit

Actor Functional Management

Object CoverageFull

Instance General Practitioner Care

Event Create CareProcedureGroupMember

CareProcedureGroupMember new CareProcedureGroupMember

CareProcedure Short Visit

16.3.2. Create Policy

Mrs. Johnson creates a policy for the Base Insurance.

Table 45 Create Policy

Actor Member

Object Policy

Instance new Policy

Event Create Policy

Person Mrs. Johnson

Product Base Insurance

Policy Number Policy-2

Start Date 1 January 2006

82

16.3.3. Submit claim

First a claim is created:

Table 46 Create Claim GP Short Visit

Actor Member

Object Claim

Instance new Claim

Event Create Claim

Policy Policy-2

Customer Reference Visit doctor

CareProcedure Short Visit

Number 1

Treatment 0 (default)

Date 1 January 2006

And submitted:

Table 47 Submit claim GP Short Visit

Actor Member

Object Claim

Instance Visit doctor

Event Submit Claim

Because General Practitioner Care is completely covered, the benefit amount is calculated as

price * number.

The processing result is:

 Benefit Amount = “9.00”

83

16.4. Use case 3: Covered 100% with age limit (Dental Care)

An example of Dental Care is care procedure 12/D61, “First Visit”. First this procedure is

defined:

Table 48 Definition of procedure First Visit

Actor Functional Management

Object CareProcedure

Instance new CareProcedure

Event Create CareProcedure

Code 12/D61

Description First Visit

Price 18,40

16.4.1. Coverage

Dental Care is covered up to and including the age of 18.

So define a CoverageAge for Dental Care:

Table 49 Definition coverage Dental Care

Actor Functional Management

Object CoverageAge

Instance new CoverageAge

Event Create CoverageAge

Product Base Insurance

Name Dental Care

Assign this care procedure to the coverage:

Table 50 Definition procedure group member First Visit

Actor Functional Management

Object CoverageAge

Instance Dental Care

Event Create CareProcedureGroupMember

CareProcedureGroupMember new CareProcedureGroupMember

CareProcedure First Visit

Define the age limits:

Table 51 Definition of age limits for Dental Care

Actor Functional Management

Object CoverageAge

Instance Dental Care

Event Change AgeLimit

Age From 0

Age To 18

84

16.4.2. Create Policy

Mrs. Johnson and John Johnson both create a policy for the Base Insurance:

Table 52 Create Policy

Actor Relation Management

Object Policy

Instance new Policy

Event Create Policy

Person Mrs. Johnson

Product Base Insurance

Policy Number Policy-3a

Start Date 1 January 2006

Repeat these steps for John Johnson and Policy Number “Policy-3b”.

16.4.3. Submit Claim

Create a claim first:

Table 53 Create Claim Consult Dentist

Actor Member

Object Claim

Instance new Claim

Event Create Claim

Policy Policy-3a

Customer Reference Dentist

CareProcedure First Visit

Number 1

Treatment 0 (default)

Date 1 January 2006

And submit the claim:

Table 54 Submit Claim First Visit

Actor Member

Object Claim

Instance Dentist

Event Submit Claim

Because Mrs. Johnson is older than 18, the claim is rejected.

Repeat the steps in this paragraph for Policy-3b of John Johnson. Because he is under 18, his

claim is accepted and completely covered.

85

16.5. Use case 4: Covered 100% up to maximum number (Nutritional Counselling)

An example of Nutritional Counselling is procedure 016/290161, “Nutritional Counselling”.

Define this procedure as follows:

Table 55 Definition of Procedure Nutritional Counselling

Actor Functional Management

Object CareProcedure

Instance new CareProcedure

Event Create CareProcedure

Code 016/290161

Description Nutritional Counselling

Price 46.40

16.5.1. Coverage

Nutritional Counselling is covered for maximum four hours per year. So define a

CoverageMaximumNumber for Nutritional Counselling:

Table 56 Definition coverage Nutritional Counselling

Actor Functional Management

Object CoverageMaximumNumber

Instance new CoverageMaximumNumber

Event Create CoverageMaximumNumber

Product Base Insurance

Name Nutritional Counselling

Assign this care procedure to the coverage:

Table 57 Definition procedure group member Nutritional Counselling

Actor Functional Management

Object CoverageMaximumNumber

Instance Nutritional Counselling

Event Create CareProcedureGroupMember

CareProcedureGroupMember new CareProcedureGroupMember

CareProcedure Nutritional Counselling

And define the maximum covered number of units:

Table 58 Definition of Maximum Number of Nutritional Counselling

Actor Functional Management

Object CoverageMaximumNumber

Instance Nutritional Counselling

Event Change Maximum Number

Maximum number 4

86

16.5.2. Create Policy

Mrs. Johnson creates a policy for the Base Insurance

Table 59 Create Policy

Actor Relation Management

Object Policy

Instance new Policy

Event Create Policy

Person Mrs. Johnson

Product Base Insurance

Policy Number Policy-4

Start Date 1 January 2006

16.5.3. Submit claim

Create the claim first:

Table 60 Create Claim Nutritional Counselling

Actor Member

Object Claim

Instance new Claim

Event Create Claim

Policy Policy-4

Customer Reference Nutritional Counselling

CareProcedure Nutritional Counselling

Number 4

Treatment 0 (default)

Date 1 January 2006

And submit the claim:

Table 61 Submit claim Nutritional Counselling

Actor Member

Object Claim

Instance Nutritional Counselling

Event Submit Claim

This claim will be covered, because the limit is not reached yet. However a next claim will be

rejected.

87

16.6. Use case 5: Cover with copayment (Inpatient Delivery)

An example of a care procedure with copayment is “041/190036”, “Inpatient Delivery

without diagnosis”.

Define this procedure first:

Table 62 Definition procedure “Inpatient Delivery without diagnosis”

Actor Functional Management

Object CareProcedure

Instance new CareProcedure

Event Create CareProcedure

Code 041/190036

Description Inpatient Delivery without diagnosis

Price 442.50

16.6.1. Coverage

A copayment of 261.50 is required by law. So define a CoverageCopayment object:

Table 63 Definition of Coverage Inpatient Delivery without diagnosis

Actor Functional Management

Object CoverageCoPayment

Instance new CoverageCoPayment

Event Create CoverageCoPayment

Product Base Insurance

Name Inpatient Delivery (no diagnosis)

Assign this care procedure to the coverage:

Table 64 Definition of Procedure Group Member Inpatient Delivery without diagnosis

Actor Functional Management

Object CoverageCoPayment

Instance Inpatient Delivery (no indication)

Event Create CareProcedureGroupMember

CareProcedureGroupMember new CareProcedureGroupMember

CareProcedure Inpatient Delivery without diagnosis

And define the copayment:

Table 65 Definition Copayment for Inpatient Delivery without diagnosis

Actor Functional Management

Object CoverageCoPayment

Instance Inpatient Delivery (no indication)

Event Create BenefitCoPayment

CoPayment Amount 261.50

88

16.6.2. Create Policy

Mrs. Johnson creates a policy for the Base Insurance.

Table 66 Create Policy

Actor Relation Management

Object Policy

Instance new Policy

Event Create Policy

Person Mrs. Johnson

Product Basic Insurance

Policy Number Policy-6

Start Date 1 January 2006

16.6.3. Submit claim

Create the claim first:

Table 67 Create Claim Bevalling

Actor Member

Object Claim

Instance new Claim

Event Create Claim

Policy Policy-6

Customer Reference Delivery

CareProcedure Inpatient Delivery without diagnosis

Number 1

Treatment 0 (default)

Date 1 January 2006

And submit the claim:

Table 68 Submit claim Bevalling

Actor Member

Object Claim

Instance Delivery

Event Submit Claim

Benefit amount for this claim is 442.50 – 261.50 = 181.00 euro.

89

16.7. Use case 6: Coverage of treatment (Physiotherapy)

An example is care procedure 02/2000, “Treatment Method Cesar”. Define this procedure as

follows:

Table 69 Definition of Procedure “Treatment method Cesar””

Actor Functional Management

Object Procedure

Instance new Procedure

Event Create Procedure

Code 02/2000

Description Treatment method Cesar

Price 26.40

16.7.1. Coverage

Physiotherapy for chronic patients is covered from treatment ten onwards. So define a

CoverageTreatment for Physiotherapy:

Table 70 Definition Coverage Physiotherapy

Actor Functional Management

Object CoverageTreatment

Instance new CoverageTreatment

Event Create CoverageTreatment

Product Base Insurance

Name Physiotherapy for chronic patients

Assign the procedure to the coverage:

Table 71 Definition Procedure Group Member Physiotherapy for chronic patients

Actor Functional Management

Object CoverageTreatment

Instance Physiotherapy for chronic patients

Event Create CareProcedureGroupMember

CareProcedureGroupMember new CareProcedureGroupMember

Procedure Treatment method Cesar

With treatment limits as follows:

Table 72 Definition treatment for Physiotherapy for chronic patients

Actor Functional Management

Object CoverageTreatment

Instance Physiotherapy for chronic patients

Event Change TreatmentLimit

Treatment From 10

Treatment To 0

90

16.7.2. Create Policy

Mrs. Johnson creates a policy for the Base Insurance:

Table 73 Create Policy

Actor Relation Management

Object Policy

Instance new Policy

Event Create Policy

Person Mrs. Johnson

Product

Policy Number Policy-6

Start Date 1 January 2006

16.7.3. Submit Claim

Create the claim first.

Table 74 Create Claim Physiotherapy

Actor Member

Object Claim

Instance new Claim

Event Create Claim

Policy Policy-6

Customer Reference Cesar

Procedure Treatment method Cesar

Number 1

Treatment 9

Date 1 January 2006

And submit the claim

Table 75 Submit claim Physiotherapy

Actor Member

Object Claim

Instance Physio 9

Event Submit Claim

This claim is rejected, because physiotherapy is only covered from treatment 10 onwards.

91

16.8. Use Case 7: Cover to Maximum Number of Units with Copayment (Maternity

Care)

Maternity Care is covered with a maximum of 80 hours, and a copayment of 3.50 per hour.

So use case 7 combines the use cases 4 and 5.

Define care procedure 06/196201, “Hour Maternity Care”.

Table 76 Definition of Procedure Hour Maternity Care

Actor Functional Management

Object CareProcedure

Instance new CareProcedure

Event Create CareProcedure

Code 016/290161

Description Hour Maternity Care

Price 37.90

16.8.1. Coverage

Define CoverageMaximumNumberCoPayment as follows:

Table 77 Definition Coverage Maternity Care

Actor Functional Management

Object CoverageMaximumNumberCoPayment

Instance new CoverageMaximumNumberCoPayment

Event Create

CoverageMaximumNumberCoPayment

Product Base Insurance

Name Maternity Care

And assign the care procedure to the coverage:

Table 78 Definition Procedure Group Member Hour Maternity Care

Actor Functional Management

Object CoverageMaximumNumberCoPayment

Instance Maternity Care

Event Create CareProcedureGroupMember

CareProcedureGroupMember new CareProcedureGroupMember

CareProcedure Hour Maternity Care

Define a maximum number of units:

Table 79 Definition of maximum number for Maternity Care

Actor Functional Management

Object CoverageMaximumNumberCoPayment

Instance Maternity Care

Event Change MaximumNumber

Maximum Number 80

Define the copayment:

Table 80 Definition Copayment for Maternity Care

Actor Functional Management

Object CoverageMaximumNumberCoPayment

Instance Maternity Care

Event Change BenefitCoPayment

Maximum number 3.50

92

16.8.2. Create Policy

Mrs. Johnson creates a policy for the Base Insurance.

Table 81 Create Policy

Actor Relation Management

Object Policy

Instance new Policy

Event Create Policy

Person Mrs. Johnson

Product Base Insurance

Policy Number Policy-7

Start Date 1 January 2006

16.8.3. Submit claim

Create the claim first:

Table 82 Create Claim Maternity Care

Actor Member

Object Claim

Instance new Claim

Event Create Claim

Policy Policy-7

Customer Reference Maternity Care

CareProcedure Hour Maternity Care

Number 10

Treatment 0 (default)

Date 1 January 2006

And submit it:

Table 83 Submit claim “Maternity Care”

Actor Member

Object Claim

Instance Maternity Care

Event Submit Claim

This claim is covered, because the maximum number limit is not reached. The benefits is

10 * (37.90 – 3.50) = 344.00 euro.

16.9. Use case 8: Cover specific treatments (IVF)

The handling of use case 8 is comparable to use case 6.

93

16.10. Use case 9: Cover partly (Prostheses)

An example is care procedure 12/P25, “Lower Prosthesis”. Define this procedure as follows:

Table 84 Definition of procedure Lower Prosthesis

Actor Functional Management

Object CareProcedure

Instance new CareProcedure

Event Create CareProcedure

Code 12/P25

Description Lower Prosthesis

Price 194.00

16.10.1. Coverage

Prostheses are 75% covered, so define CoveragePercentage as follows:

Table 85 Definition Coverage Prostheses

Actor Functional Management

Object CoveragePercentage

Instance new CoveragePercentage

Event Create CoveragePercentage

Product Base Insurance

Name Prostheses

Assign the care procedure to the coverage:

Table 86 Definition Procedure Group Member Lower Prosthesis

Actor Functional Management

Object CoveragePercentage

Instance Prostheses

Event Create CareProcedureGroupMember

CareProcedureGroupMember new CareProcedureGroupMember

CareProcedure Lower Prosthesis

And define the coverage percentage:

Table 87 Definition percentage for Prostheses

Actor Functional Management

Object CoveragePercentage

Instance Prostheses

Event Create BenefitPercentage

Percentage 75

94

16.10.2. Create Policy

Mrs. Johnson creates a policy for the Base Insurance:

Table 88 Create Policy

Actor Relation Management

Object Policy

Instance new Policy

Event Create Policy

Person Mrs. Johnson

Product Base Insurance

Policy Number Policy-9

Start Date 1 January 2006

16.10.3. Submit claim

Table 89 Create Claim Lower Prosthesis

Actor Member

Object Claim

Instance new Claim

Event Create Claim

Policy Policy-9

Customer Reference Lower Prosthesis

CareProcedure Lower Prosthesis

Number 1

Treatment 0 (default)

Date 1 January 2006

Table 90 Submit claim Lower Prosthesis

Actor Member

Object Claim

Instance Lower Prosthesis

Event Submit Claim

Benefit amount = 75% * 194.00 = 145.40 euro.

