

1

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

Miss Grant's Controller: A JSD specification
by Stephen Ferg

http://www.ferg.org

revised: 2010-11-20

For the purpose of writing computer software specifications, it is useful to view a computer software

system as a software "machine" that transitions from state to state under the control of an input stream of

events.

Traditionally, computer system specifications focus on the states and the transitions between the states:

they view the system as a state machine and use state transition diagrams (STDs) to specify the behavior

of the machine.

In contrast, Jackson System Development (JSD)1 specifications focus on the events and the sequence in

which the events may occur. JSD views a software machine as a simulation in which model processes

(coroutines running inside the system) simulate real-world processes. The model processes running in the

machine are synchronized with their real-world counterparts by means of events – events sent from the

real-world processes into the machine. JSD uses action structure diagrams to represent model

processes.

I (and others, of course) believe that JSD-style specifications are a more useful tool than STDs and state

machines for specifying many systems. For many clients, events and the order in which events occur are

"easier to think with" than states and state transitions. 2

In this paper, I will present a small argument-by-example for JSD event-oriented specifications. I will

present the example, and you can decide for yourself what you think of it.

1 See www.jacksonworkbench.co.uk/stevefergspages/jackson_methods

2 Although many clients find event-oriented concepts easier to use, they typically find state transition diagrams

easier. Flow charts -- Dilbert's "circles and arrows" -- have been used in business documentation for decades.

State transition diagrams seem familiar and intuitive because they look and work like flow charts. Ease-of-use in

this case is a result of familiarity rather than superiority.

http://creativecommons.org/licenses/by-nc/3.0/
http://www.jacksonworkbench.co.uk/stevefergspages/jackson_methods/index.html
http://creativecommons.org/licenses/by-nc/3.0/

2

The problem and its state-oriented specification

My example problem will be based on an example problem from the introduction to Martin Fowler's new

(2010) book Domain-Specific Languages.

http://www.amazon.com/Domain-Specific-Languages-Addison-Wesley-Signature-

Martin/dp/0321712943/ref=sr_1_1?ie=UTF8&s=books&qid=1289683183&sr=1-1

I've chosen it because Fowler has done an excellent job of presenting a state-oriented approach to the

problem, and he has made his work available on the Web as Domain-Specific Languages: An

Introductory Example. See http://www.informit.com/articles/printerfriendly.aspx?p=1592379

I have compressed and partly re-written Fowler's original description of the problem. For Fowler's

original statement of the problem, see the Web link listed above.

I have childhood memories of watching cheesy adventure films on TV. Often, these films would
be set in some old castle and feature secret compartments or passages. In order to find them,
heroes would need to pull the candle holder at the top of stairs and tap the wall twice.

Let’s imagine a company, Gothic Security Systems, that decides to build security systems based
on this idea.

At the center of their security systems is some controller software that listens to event messages,
figures out what to do, and sends command messages to devices (like the locks of panels that
hide secret compartments).

A good way to think about the controller is as a state machine. Each sensor sends an event that
can change the state of the controller. As the controller enters a state, it can send a command

message out to devices on the network.

Each customer who buys a gothic security system can have it configured to his or her individual
needs.

Take Miss Grant, for example. Miss Grant has a secret compartment in her bedroom that is
normally locked and concealed. In order to access her secret compartment, Miss Grant must:

(1) close her bedroom door, and then (in either order) (2a) open the second drawer in her chest
and (2b) turn on her bedside light.

Once these are done, the secret panel is unlocked for her to open.

I can represent this sequence as a state diagram.

http://www.amazon.com/Domain-Specific-Languages-Addison-Wesley-Signature-Martin/dp/0321712943/ref=sr_1_1?ie=UTF8&s=books&qid=1289683183&sr=1-1
http://www.amazon.com/Domain-Specific-Languages-Addison-Wesley-Signature-Martin/dp/0321712943/ref=sr_1_1?ie=UTF8&s=books&qid=1289683183&sr=1-1
http://www.informit.com/articles/printerfriendly.aspx?p=1592379

3

On the STD, some states have notations indicating the command messages that the controller sends to the

devices when it enters the state.

 The unlockedPanel state has notations for unlockPanel and lockDoor commands. If the

controller is in the waitingForLight state, and Miss Grant turns on the light, then the controller

sends the unlockPanel message to the appropriate network device (the lock on the panel that

conceals the secret compartment), sends the lockDoor command to the lock on the bedroom door,

and then transitions itself to the unlockedPanel state.

 If the controller is in the unlockedPanel state, and Miss Grant either closes the panel hiding the

secret compartment, or opens the bedroom door, then the controller sends the unlockDoor and

lockPanel commands and transitions itself to the idle state.

4

There are two ways in which Fowler's state transition diagram differs from a conventional STD.

First, as Fowler notes:

The controller is, mostly, a simple and conventional state machine, but there is a twist.

The controller spends most of its time in the idle state. Certain events ("reset events") can jump

the controller back into this idle state from any of the other states, effectively resetting the
model. In Miss Grant’s case, opening the door is such a reset event.

On the STD, the existence of reset events is indicated by the dotted box near the idle state.
Classic STDs don't include reset events. Introducing reset events adds a twist that is unique to
this context.

Note that reset events aren’t necessary to express Miss Grant’s controller. The alternative would
be for every state to have a transition, triggered by the doorOpened event, to the idle state. Lines
for all of those transitions would clutter up the diagram and reduce its readability. The notion of a

reset event is useful because it simplifies the diagram by allowing us to avoid showing all of those
reset-related transitions.

The second way in which Fowler's state transition diagram differs from a conventional STD is that it

doesn't show all transitions, it shows only transitions that change state.

Suppose that Miss Grant comes into the room without closing the door behind her, leaving the controller

in the idle state. She turns on the light. The lightOn event is an event that the controller recognizes,

although a lightOn event has no particular meaning to the controller when it is in the idle state.

In a conventional STD, the controller's handling of the lightOn event would be shown by a circular

transition out of the idle state and then back into the idle state. The result would be that the controller

does actually process the lightOn event when it is in the idle state, but the processing doesn't change the

controller's state.

These circular transitions are not shown on Fowler's STD.

5

The problem and its event-oriented specification

State-oriented specifications use state-transition diagrams to show states and transitions.

JSD, an event-oriented method, uses action structure diagrams to show events and the sequences in

which events can occur.

Here is a JSD action-structure diagram for Miss Grant's controller. The shaded boxes indicate the

processing of an event. They correspond to the transitions on an STD.

Following Fowler's example, I've omitted showing the processing of reset events and the processing of

events that don't change the controller's state.

Controller

Life

One

Access

Normal

Access

Interrupted

Access

? ?

Process

Close

Door

Step 2

Step 2

event

Process

Open

Drawer

Process

Turn on

Light

o o

Process

Open

Door

Implicit

Open Panel

Event

Process

Close

Panel

Send

Start

Commands

Send

End

Commands

Send

End

Commands

*

*

What this diagram says is that the life of Miss Grant's controller consists of a sequence of indefinitely

many access episodes.

A typical normal access begins with Miss Grant closing her bedroom door and then performing Step 2:

a series of actions that must include both turnOnLight and openDrawer at least once.

At that point the controller issues the startCommands (the commands that really start the access episode:

lockDoor, unlockPanel). Now, with the panel unlocked, Miss Grant opens the panel and presumably does

something with the contents of the secret compartment.

When she has finished, she closes the panel. When she closes the panel, the controller issues the

endCommands (the commands that really end the access episode: lockPanel, unlockDoor).

At that point the normal access is finished. In state-oriented terms: the controller returns to its idle state.

6

In most cases JSD isn't really interested in states. For JSD, a state is simply what a model process looks

like between events. But if you want to think in terms of states, you can. Mapping the JSD model back to

the STD, we can say that during a normal access episode:

after this event is processed the state of the controller is

closeDoor active

turnOnLight waiting for both turnOnLight and

openDrawer to have happened at least once openDrawer

after both turnOnLight and openDrawer

have happened,

and the startCommands have been issued

unlockedPanel

closePanel idle

So that's what happens during a normal access episode.

Sometimes, while an access episode is in progress, an openDoor event occurs. The openDoor event

interrupts the normal progress of the access episode. The episode is no longer a normal access; it

becomes an interrupted access. The controller processes the openDoor event, issues the end commands

(lockPanel, unlockDoor), and the access episode is over.

In JSD, the transition or jump from a normal access to an interrupted access is called a "quit". In our

example, a JSD analyst would say that the openDoor event triggered a quit.

For all practical purposes, triggering a quit is the same as raising (or throwing) an exception. If we were

writing a Java program to implement this model process, the code for the normal access would be placed

in a "try" block. The code for the interrupted access would be placed in the corresponding "catch" block.

And the code for triggering the quit might look something like this:

if (event.typeIs(OpenDoor)) {

 throw new JsdQuitException();

}

7

Executable specifications

For a long time, JSD experts have had a vision of executable specifications: the ability to write software

specifications in a high-level pseudo-code that could be executed to test the specifications.3

In the 1990's that vision was frustrated primarily by the fact that a JSD model process is a coroutine, 4 but

COBOL – the programming language in use in the business community where JSD was most popular –

did not support coroutines. Executable specifications could be built in COBOL, but only by using an

elaborate mechanism employing code generation, a macro-processor, many custom macros, and a lot of

GOTOs. I know; I wrote a lot of it.

That situation has changed in the last few years, with the increasing acceptance of dynamic programming

languages, and in particular the increasing use of Python. Python, it turns out, is the ideal language for

creating executable JSD specifications.

 First of all, Python has an exceptionally clean and simple syntax – it has a well-deserved reputation

as "executable pseudo-code". This makes it very easy to learn and to use.

 Second, Python is a dynamically-typed language with powerful introspection capabilities. This makes

it extremely flexible and powerful.

 Finally, and most importantly, (since version 2.5) Python has native support for coroutines.5

Recently, I have been developing a small (currently, 176 lines) package called pyJSD. pyJSD adds some

JSD syntactic sugar to Python, in order to make Python even more useful to JSD systems analysts.

Using Python and pyJSD, I have developed an executable specification of Miss Grant's controller.

This is what Miss Grant's controller looks like when the action structure diagram is translated into

Python.6

3 See "Executable Specifications as a Tool for System Architecture" by A. T. McNeile and J. Powell, in JSP & JSD:

The Jackson Approach to Software Development, second edition, by John R. Cameron, IEEE Computer Society

Press, 1989.

4 "Coroutines are functions or procedures that save control state between calls."

http://www.c2.com/cgi/wiki?CoRoutine accessed November 16, 2010.

"A coroutine is a routine that can be suspended at some point and resume from that point when control returns."

http://gcu.googlecode.com/files/coroutine.pdf

See also http://en.wikipedia.org/wiki/Coroutine

5 It's impossible to mention Python and coroutines in the same breath without mentioning the pioneering work of

David Beazley. He proved that all of the capabilities needed to do executable specifications – even a trampolining

scheduler – can be implemented in Python (see his PyCon 2009 presentation, A Curious Course on Coroutines and

Concurrency at www.dabeaz.com/coroutines). Now, the only remaining question is whether the underlying

machinery can be wrapped in enough syntactic sugar to make it a practical tool for working JSD analysts.

6 The code is written in Python 3.0.

http://www.c2.com/cgi/wiki?CoRoutine
http://gcu.googlecode.com/files/coroutine.pdf
http://en.wikipedia.org/wiki/Coroutine
http://www.dabeaz.com/coroutines/index.html

8

The opening lines set up the environment.

They define the kinds of events that the controller can receive from the sensors, and they define the

devices to which commands can be sent.

001 #missGrantsController.py

002 import jsd

003

004 #Define sensor events that we can receive

005 class CloseDoor (jsd.Event): pass

006 class TurnOnLight(jsd.Event): pass

007 class OpenDrawer (jsd.Event): pass

008 class ClosePanel (jsd.Event): pass

009 class OpenDoor (jsd.Event): pass

010

011 #Define devices where we can send commands

012 class BedroomDoor:

013 def lock(self):

014 print(" door locked")

015 def unlock(self):

016 print(" door unlocked")

017

018 class CompartmentPanel:

019 def lock(self):

020 print(" panel locked")

021 def unlock(self):

022 print(" panel unlocked")

023

024 door = BedroomDoor()

025 panel = CompartmentPanel()

 026

027 def sendStartCommands():

028 door.lock(); panel.unlock()

029

030 def sendEndCommands():

031 panel.lock(); door.unlock()

032

9

Here is the code for the model process, the controller itself.

033 # Define the controller model process ---------------

034 class MissGrantsController(jsd.ModelProcess):

035 def Life(self):

036 event = yield() # JSD getFirstEvent

037 while True: # do forever

038 # One Access

039 try:

040 #--

041 # JSD "POSIT" that we have a "normal access"

042 #--

043 # process event: closeDoor

044 while not event.typeIs(OpenDoor, CloseDoor):

045 event = yield() # ignore irrelevant events

046 if event.typeIs(OpenDoor): jsd.quit() # the RESET event

047 event = yield() # JSD getNextEvent

048

049 # Step 2

050 LightIsOn = False

051 DrawerIsOpen = False

052 while True: # loop until we BREAK out of the loop

053 while not event.typeIs(OpenDoor, TurnOnLight, OpenDrawer):

054 event = yield() # ignore irrelevant events

055 if event.typeIs(OpenDoor): jsd.quit()# the RESET event

056

057 if event.typeIs(TurnOnLight):

058 LightIsOn = True

059 elif event.typeIs(OpenDrawer):

060 DrawerIsOpen = True

061

062 if LightIsOn and DrawerIsOpen:

063 break

064 else:

065 event = yield() # JSD getNextEvent

066

067 sendStartCommands() # to devices

068 event = yield() # JSD getNextEvent

069

070 # process event: openPanel

071 # nothing to do. We don't get notified of this event

072

073 # process event: closePanel

074 while not event.typeIs(OpenDoor, ClosePanel):

075 event = yield() # ignore irrelevant events

076 if event.typeIs(OpenDoor): jsd.quit() # the RESET event

077 sendEndCommands() # to devices

078 event = yield() # JSD getNextEvent

079

080 #--

081 # JSD "ADMIT" that we have an "interrupted access"

082 #--

083 except jsd.Quit:

084 sendEndCommands() # to devices

085 event = yield() # JSD getNextEvent

10

I have tried to comment the code so you can easily map chunks of code back to their corresponding nodes

in the action structure diagram.

There are some pieces of code that don't correspond to anything on the STD or the action structure

diagram. These are the bits of code that implement things that were left off of the diagrams.

 The transitions for the openDoor reset event.

 The circular transitions that don't change the controller's state.

 Consider this code snippet:

043 # process event: closeDoor

044 while not event.typeIs(OpenDoor, CloseDoor):

045 event = yield() # ignore irrelevant events

046 if event.typeIs(OpenDoor): jsd.quit() # the RESET event

Lines 44 and 45 implement a while loop that loops, ignoring all events that don't change the controller's

state, until it finds some type of event that it wants to use.

Line 46 corresponds to the "reset events" on Fowler's STD. It is the code that triggers the JSD quit when a

"reset" event (openDoor) is encountered.

 if event.typeIs(OpenDoor):

 jsd.quit()

11

The summing up

I said in the introduction to this paper, that I would be presenting an argument-by-example for JSD

event-oriented specifications. And I said that you could decide for yourself what you think of it.

My argument-by-example is now concluded. We have a JSD specification for Miss Grant's controller.

Now it is your turn.

 Compare the conceptual vocabulary of the state-oriented and the event-oriented approaches – states

and state transitions vs. events and the order in which they may occur.

Which do you prefer? Which do you find more intuitive?

 Compare the diagramming techniques – state transition diagrams vs. action structure diagrams.

As you look at them, which do you think gives you a better overall understanding of the behavior of

Miss Grant's controller?

 Compare the code.

Look at the Python code for Miss Grant's controller, and then to compare it to the several different

flavors of state-oriented specifications that Fowler provides on the Web page that I mentioned earlier.

http://www.informit.com/articles/article.aspx?p=1592379&seqNum=3

What do you think of it?

http://www.informit.com/articles/article.aspx?p=1592379&seqNum=3

12

The executable specifications executed

Wait! There's more! This is the fun stuff!

I claimed earlier that I had created an executable specification in Python. You've seen the code. Now it is

time for me to prove that it really is executable.

To run the model, we need to create some test data – a stream of sensor events – that we can feed to the

controller. So here is the code for the Python driver program. It creates a sequence of event objects and

feeds them to the Python specification for Miss Grant's controller.

Note that we create the controller object by instantiating the MissGrantsController class. And then we set

its verbose attribute to True. This tells the controller to log its activities as it runs.

001 from missGrantsController import *

002

003 #--

004 # Make the controller model process

005 #--

006 controller = MissGrantsController()

007

008 # tell the controller to log its activities

009 controller.verbose=True

010

011 #--

012 # Send events to the controller

013 #--

014 # normal access

015 controller.send(CloseDoor())

016 controller.send(TurnOnLight())

017 controller.send(OpenDrawer())

018 controller.send(ClosePanel())

019

020 # interrupted access

021 controller.send(CloseDoor())

022 controller.send(TurnOnLight(1))

023 controller.send(TurnOnLight(2))

024 controller.send(TurnOnLight(3))

025

026 controller.send(ClosePanel("contextError"))

027 controller.send(ClosePanel("contextError"))

028

029 controller.send(OpenDrawer())

030 controller.send(OpenDoor ("forces QUIT"))

031 controller.send(ClosePanel("contextError"))

13

Finally, here is the output produced by a test run.

Even in verbose mode, the original version of Miss Grant's controller would produce only the lines

beginning with EVENT and the lines reporting the lock and unlock commands. I wanted to be able to

show you more details of what the controller was doing while it executed, so this is the output of a version

of the controller that I enhanced with a few logging commands.

C:/Python30/python.exe C:/pydev/pyJSD/missGrantsController_run.py

EVENT (1) MissGrantsController() got event: CloseDoor()

 Yes! processing event: CloseDoor

EVENT (2) MissGrantsController() got event: TurnOnLight()

 Yes! processing event: TurnOnLight

EVENT (3) MissGrantsController() got event: OpenDrawer()

 Yes! processing event: OpenDrawer

 sendStartCommands

 door locked

 panel unlocked

EVENT (4) MissGrantsController() got event: ClosePanel()

 Yes! processing event: ClosePanel

 sendEndCommands

 panel locked

 door unlocked

EVENT (5) MissGrantsController() got event: CloseDoor()

 Yes! processing event: CloseDoor

EVENT (6) MissGrantsController() got event: TurnOnLight(1)

 Yes! processing event: TurnOnLight

EVENT (7) MissGrantsController() got event: TurnOnLight(2)

 Yes! processing event: TurnOnLight

EVENT (8) MissGrantsController() got event: TurnOnLight(3)

 Yes! processing event: TurnOnLight

EVENT (9) MissGrantsController() got event: ClosePanel(contextError)

 **** ignoring event: ClosePanel

EVENT (10) MissGrantsController() got event: ClosePanel(contextError)

 **** ignoring event: ClosePanel

EVENT (11) MissGrantsController() got event: OpenDrawer()

 Yes! processing event: OpenDrawer

 sendStartCommands

 door locked

 panel unlocked

EVENT (12) MissGrantsController() got event: OpenDoor(forces QUIT)

 Yes! processing event: OpenDoor

 sendEndCommands

 panel locked

 door unlocked

EVENT (13) MissGrantsController() got event: ClosePanel(contextError)

 **** ignoring event: ClosePanel

The primary purpose of creating executable specifications is so that we can actually compile, run, test, and

debug our specifications.

I can testify that it works. I didn't get MissGrantsController.py right the first time. There were indeed

bugs. But I executed the specifications, I found the bugs, and I fixed them.

That's what it's all about.

14

Prior art: Python Coroutines

Python Enhancement Proposal (PEP) 342: Coroutines via Enhanced Generators (10-May-2005)

 http://www.python.org/dev/peps/pep-0342/

 http://docs.python.org/whatsnew/2.5.html#pep-342-new-generator-features

David Beazley

 talks and presentations at www.dabeaz.com/talks.html, especially...

 A Curious Course on Coroutines and Concurrency at www.dabeaz.com/coroutines

 Video of the presentation, in 3 parts:

http://python.mirocommunity.org/video/996/pycon-2009-a-curious-course-on

http://python.mirocommunity.org/video/994/pycon-2009-a-curious-course-on

http://python.mirocommunity.org/video/995/pycon-2009-a-curious-course-on

Short papers by David Mertz at IBM DeveloperWorks

 Generator-based state machines

http://www.ibm.com/developerworks/library/l-pygen.html

 Implementing "weightless threads" with Python generators

http://www.ibm.com/developerworks/library/l-pythrd.html

SimPy (= Simulation in Python) is an object-oriented, process-based discrete-event simulation language

based on standard Python. Basically, SimPy wraps coroutines in syntactic sugar in order to make it easier

to use them to do discrete event simulation.

 http://simpy.sourceforge.net/

 http://www.ibm.com/developerworks/linux/library/l-simpy.html

 http://heather.cs.ucdavis.edu/~matloff/simpy.html

 http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf

Stackless Python is a Python implementation that supports a lot of neat stuff that CPython does not,

including very nice support for coroutines.

 http://www.stackless.com/

 http://en.wikipedia.org/wiki/Stackless_Python

 http://www.stackless.com/spcpaper.pdf

http://www.python.org/dev/peps/pep-0342/
http://docs.python.org/whatsnew/2.5.html#pep-342-new-generator-features
http://www.dabeaz.com/talks.html
http://www.dabeaz.com/coroutines/index.html
http://python.mirocommunity.org/video/996/pycon-2009-a-curious-course-on
http://python.mirocommunity.org/video/994/pycon-2009-a-curious-course-on
http://python.mirocommunity.org/video/995/pycon-2009-a-curious-course-on
http://www.ibm.com/developerworks/library/l-pygen.html
http://www.ibm.com/developerworks/library/l-pythrd.html
http://simpy.sourceforge.net/
http://www.ibm.com/developerworks/linux/library/l-simpy.html
http://heather.cs.ucdavis.edu/~matloff/simpy.html
http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf
http://www.stackless.com/
http://en.wikipedia.org/wiki/Stackless_Python
http://www.stackless.com/spcpaper.pdf

