
Implementation of Decision Modules

Serguei Roubtsov
Technical University Eindhoven, the Netherlands

s.roubtsov@tue.nl

Ella Roubtsova
Open University of the Netherlands

ella.roubtsova@ou.nl

ABSTRACT
Separation of concerns can have different forms. The well
accepted concern is an object behavior usually specified as
a life cycle module. In this paper, we define another type
of concern, a decision module, and identify it in require-
ments and models. Separation of decision modules in pro-
grams may improve traceability of requirements and sim-
plify code analysis. We present the results of our experi-
ments with implementation of decision modules. We imple-
ment the modules using object composition, reflection, the
publisher-subscriber design pattern and aspects. We present
the possibilities of different implementation forms and illus-
trate our observations of pros and cons with an example of
a document submission system.

Categories and Subject Descriptors
D.2 [SOFTWARE ENGINEERING]; D.2.2 [Design Tools
and Techniques]; D.2.3 [Coding Tools and Techniques];
D.3.3 [Language Constructs and Features]

General Terms
Modules and Interfaces, State Diagrams, Object-oriented
programming, Language Constructs and Features

Keywords
Decision Module, Requirement, Model, Program, Protocol
Contracts

1. INTRODUCTION
Modules are useful instruments for handling complexity of

software systems. Modules are created for various purposes
depending on which different approaches to modularisation
exist. Among the goals of modularization are traceability
of requirements and ease of code modification, reuse, and
testing.

The most commonly used modularization of object life
cycles hides the process control points, i.e. the decisions
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
BM-FA ’14, July 22 2014, York, United Kingdom
Copyright 2014 ACM 978-1-4503-2791-6/14/07 ...$15.00.
http://dx.doi.org/10.1145/2630768.2630774.

on which path to follow, inside the objects. To be able
to modify a program or generate a test, the control points
inside life cycle modules have to be analysed.

In this paper, we define the decision modules and separate
them from the life cycle behaviour of objects. Section 2
defines a decision module. Section 3 presents the approaches
that separate the modules similar to the decision modules.

The next sections of the paper contribute to the defini-
tion of a decision module from the perspective of a phase of
system development.

Section 4 presents the case study used for illustration of
our modularization vision.

Section 5 shows how the decision modules are identified
in requirements.

Section 6 identifies the decision modules in executable
protocol models [14], explains the composition of decision
modules and life-cycle modules and recognizes the attractive
properties of modules in protocol modelling. These proper-
ties facilitate model changing and testing. The same prop-
erties are decried in the implemented systems. Therefore,
we formulate our research question: Is it possible to imple-
ment the decision modules using mainstream object-oriented
language techniques in such a way that the implementation
of decision modules would have the same properties as the
decision modules in executable protocol models?

Section 7 applies different software development techniques
(object composition, reflection, the publisher-subscriber de-
sign pattern and aspects) for implementation of decision
modules and estimates whether the implementation preserves
the desired properties of protocol models.

Section 8 concludes the paper and draws perspectives for
the future work.

2. DEFINITION OF DECISION MODULE

• We define a decision module as an abstract descrip-
tion of the system actions and the states before and af-
ter these actions allowing or forbidding these actions
action or allowing a choice between several actions.

• We separate a decision module as a module because it
can be associated with different objects as a separate
entity.

• We name this module a decision module because it
forms the condition for the acceptance or refusion of
an action. The condition is derived from the pre- and
post-states of the action in the life cycle modules.

3. RELATED WORK
Modules similar to our decision modules have been also

recognized in Business Rules. The modules are called en-
ablers [2].

”An enabler is a type of action assertion which, if true,
permits or leads to the existence of the correspondent ob-
ject.” An enabler has varying interpretations depending on
the nature of the correspondent object: it may permit (i.e.,
enable) the creation of a new instance; permit another action
assertion; permit an action execution [2] and often called an
integrity constraint, a condition or a test.

The enablers represent only a subset of our decision mod-
ules because the decision modules can both enable and dis-
able (refuse) an action execution, the creation of a new in-
stance and another action assertion.

In rather advanced form, such an approach to modulariza-
tion can be seen in protocol models [12]. Protocol modeling
makes use of Communicating Sequential Processes (CSP) [6]
parallel composition of modules which possess internal data.
The CSP parallel composition produces observationally con-
sistent models. This means that the protocol model allows
one to add and delete modules as the behaviour of modules
is preserved in the the whole behaviour [11]. The modules
separated in protocol models possess the following proper-
ties:

• able to read (but not change) attributes, an event pre-
state of other modules, and predict the event post-
state for the given event [14],

• able to be composed with different life cycle modules
(objects) in such a way that the life cycle modules do
not know about the decision modules (remain oblivi-
ous) and, thus, should not be changed as the latter are
added or changed [11; 12].

The decision modules are easily separated in protocol mod-
els as protocol machines with derived states. However, the
protocol machines with derived states cover not only the de-
cision modules. They possess the expressive pover for sepa-
ration of a wider class of modules.

4. CASE STUDY: PREPARATION OF
A DOCUMENT BY SEVERAL PARTICI-
PANTS

We illustrate the proposed modularization with a case
study. It demonstrates how the declarations of the decision
modules can be transformed into modules of executable syn-
chronous protocol models. The goal of the case is to show
the advantages of decision modules for model changes.

Let us consider a system that controls a joint preparation
of a document, e.g. a proposal, a paper or a report, by
several participants. One of the participants usually plays
the role of the coordinator responsible for submitting the
document. There is a deadline for the document submission.

The coordinator creates the parts of the document and
chooses participants. A part is assigned to a participant. A
part has its own deadline before the deadline of the docu-
ment and should be submitted by the participant so that
the coordinator has time to combine parts and submit the
document.

If a participant misses the part deadline, the coordinator
sends a reminder request to the delaying participant. The
coordinator can change the deadline or assign the document
to another participant. Only the coordinator can cancel the
preparation of the document.

5. DECISION MODULES
IN REQUIREMENTS

In our experience of requirements engineering we have
found that requirements often describe the decision modules
informally.

We start with an observation that almost every sentence
of requirements presents a snapshot of the desired system
behaviour (Figure 1). A snapshot is a visible abstract state
captured after or before an event.

For example, the declaration ”A document can be sub-
mitted before the deadline” can be presented as a decision
module DeadlineControl. It shows that the event Submit
Document can only take place if the deadline is not expired.
Figure 1 presents the decision module DeadlineControl

and other modules taken from the case description. We de-
pict an abstract state as a double line oval. An oval may
have an ingoing or outgoing arc ladled with an action that
can happen. If an action can happen only if it results in
described state, then the arc is ingoing. The example is the
DeadlineControl. If an action can happen only in the de-
scribed state, then the arc is outgoing. The example is the
constraint Document Submittable: If all parts are ready, the
document can be submitted.

The state descriptions in decision modules are abstracted
from the life cycle of entities and agents of the system. An
abstract state may present the state of a set of system con-
cepts, a subset of states of the system, etc. For example,
state submittable of the decision module Document submit-

table depends on the states of all parts of the document.
Often the decision modules give instructions or polices on

what to do in a situation described as an abstract state. For
example, the progress constraint Act presents a possibility
to progress by creating a new participant (event Create Par-
ticipant) who can write the part (event Assign Part).

The elements of the life cycle of entities and agents (ob-
jects) in the model are also presented in requirements as
declarations of decision modules. For example, we can read
in requirements what an instance of the Coordinator can
do when it is created (state ”Created”). It can Create Doc-
ument, Submit Document, Create Participant, Create Part,
Assign Part and Cancel Document.
The declarative specifications are not executable. How-

ever, there is a way to preserve decision modules as modules
of executable models. We show this way of modularization
in the next sections.

6. DECISION MODULES
IN PROTOCOL MODELS

6.1 Protocol Model
The building blocks of a Protocol Model [14] are protocol

machines and events. They are instances of, correspond-
ingly, protocol machine types and event types.

not expired
Submit Document

submittable
Submit Document

Create Part
(Deadline)

Part
- A part of the document is created
- Each part has a deadline.
- Each part is assigned to a participant.

Document
- A document is created with its deadline.

Create Participant

Participant
- A participant is created.
- Each part is assigned to a participant.
- A participant submits the assigned part.

Deadline Control
- A document can be submitted before the deadline.

Deadline Part Correctness
- The part deadline is correct, if it is in the future but before the
document deadline.

Document Submittable
- If all parts are ready, the document can be submitted.

act

Create Participant,
Assign Part

Act
- If a participant has missed the part deadline, the coordinator
may assign the part to the same participant with a new
deadline or to another participant.

Create Document

DeadlineCorrectness
- The deadline of the document is correct, if it is in the future.

Coordinator
- A coordinator is created.
- The preparation of the document can be always cancelled by the
coordinator.

correct

created

created

Assign Part, Submit Part

Assign Part, Submit Part

Create
Document
(Deadline) created

Cancel Document,
Submit Document

Create
Coordinator created

Cancel Document, Create
Participant, Create Part, Assign Part,
Submit Part, Submit Document

correct
CreatePart

Figure 1: Declarative specification

A protocol machine type is an LTS (Labelled Transition
System) extended to enable modelling with data:

PMi = (s0i , Si, Ei, Ai, CBi, Ti), where

• s0i is the initial state;

• Si is a non-empty finite set of states.

• Ei is a finite set of recognized event types ei, coming
from the environment.

• Ai is a finite set of attributes of different types. The
set can be empty.

• CBi(PM1, ..., PMn, E1, ..., Em) =
(PM1, ..., PMn, E1, ..., Em)
is a callback function for updating the values of the
attributes, states and events of the protocol machines
of the protocol model. PM1, ..., PMn are the protocol
machines of the protocol model. E1, ..., Em are events
of the protocol model.

• Ti ⊆ Si × Ei × Si a finite set of transitions:
t = (sx, e, sy), sx, sy ∈ Si, e ∈ Ei. The set of transi-
tions can be empty. The states may be updated with-
out callback functions. The values of the attributes,
states and events may be updated using the callback
function only as a result of a transition, i.e., as a result
of event acceptance.

In order to facilitate reuse, protocol machines come in
two variants: Objects and Behaviours. Behaviours cannot
be instantiated on their own but may extend functionality
of objects. In a sense, behaviours are similar to mixins or
aspects in programming languages [1; 12].

An event type is a tuple e = (EventName,Ae, CBe),
where

• Ae is a finite set of attributes of the event.

• CBe(PM1, ..., PMn, E1, ..., Em) =
(PM1, ..., PMn, E1, ..., Em)
is a callback function corresponding to this event. The
callback function for an event is used if the event cal-
culates attributes of generates other events from the
state of the model.

Within the Protocol Modelling, callback functions are the
instrument for data handling. In the ModelScope tool [13]
supporting execution of protocol models, the callbacks are
coded as small Java classes with methods changing and/or
returning the values of attributes and states of instances
of protocol machines. They may also change attributes of
events and generate event instances.

CSP parallel composition. In any state, a system model
PM is a CSP parallel composition of finite set of instances
of protocol machines.

n
PM = ‖PMi = (s0, S, E,A,CB, T), n ∈ N.

i = 1

A Protocol Model PM is also a protocol machine, the set
of states of which is the Cartesian product of states of all
composed protocol machines [14]:

n
s0 =

⋃
s0i is the initial state;

i = 1

n
S =

∏
Si is the set of states;

i = 1

not expired
SubmitDoc

submittable
SubmitDoc

submitted
CteatePart

SubmitPart

Part

submitted

Document

created
SubmitDoc

CreateDoc
(Deadline)

UpdateDoc(Deadline),
CreatePart,
AssignPart

created
CteateParticipant

Participant

AssignPart,
SubmitPart

correct

CreatePart,
AssignPart

DeadlineControl

DeadlinePartCorrectness

Document Submittable

act

DESIRED:
CreateParticipant,

AssignPart

creates

AssignPart

CreateDoc,
UpdateDoc

DeadlineCorrectness

cancelled

CancelDoc

Coordinator

created
CreateCoordinator

CreateDoc,
UpdateDoc,
SubmitDoc,

CreateParticipant,
CreatePart,
AssignPart,
CancelDoc,

correct

unique
Create

Duplicate Check

Module of Synchronous Composition (CSP parallel Composition)

GENERIC Create
MATCHES
CreateDoc,
CreatePart[Document

GENERIC E
MATCHES
all Events

EVENT CreateCoordinator
ATTRIBUTES
NameCoordinator:String,
Coordinator:Coordinator

EVENT CreateDoc
ATTRIBUTES
Document:Document,
Name:String, Deadline:Date,
Coordinator:Coordinator
EVENT UpdateDoc
ATTRIBUTES
Document:Document,
Name:String,
Deadline:Date,
Coordinator:Coordinato
EVENT SubmitDoc
ATTRIBUTES
Document: Document,
Coordinator:Coordinator
EVENT CancelDoc
ATTRIBUTES
Document:Document,
Coordinator:Coordinator

EVENT AssignPart
ATTRIBUTES
Document:Document,
Part:Part, DeadlinePart:Date,
Participant:Participant,
Coordinator:Coordinator

EVENT SubmitPart
ATTRIBUTES
Part:Part,
Participant:Participant

EVENT CreateParticipant
ATTRIBUTES
Participant:Participant,
NameParticipant:String,
Coordinator:Coordinator

All machines that recognize E are in state, where they are able to accept E

Deadline=
Deadline

DeadlinePart=
DeadlinePart

EVENT CreatePart
ATTRIBUTES
Part:Part, Name:String,
DeadlinePart:Date,
Coordinator:Coordinator,
Document:Document,

E

Figure 2: Executable Protocol Model

n
E =

⋃
Ei is the set of events;

i = 1

n
A =

⋃
Ai is the set attributes of all machines;

i = 1

n
CB =

⋃
CBi is the set of callbacks of all machines.

i = 1

Dependent Protocol Machines. Derived states. Usually
transitions Ti of a protocol machine PMi enable updates
of its own states of the state set Si. On the other hand,
protocol machines can read the states of other protocol ma-
chines, although cannot change them. This property makes
possible dependency of protocol machines. The dependency
means that one protocol machine needs to read the state
of another machine to calculate its own state and/or the
attributes. Such calculated states are called derived states,
which distinguishes them from the protocol machine states
denoted in the model, which are called stored states [14].
Callback functions CBi are used to update attributes and
calculate derived states.

The ability of protocol machines to read the state of other
protocol machines is an asset for separation of decision mod-
ules. Decision modules read the information of other mod-
ules and use it to make a decision according to the rules
coded in the module.

Two possibilities are used in dependent machines:
(1) The pre-state of a transition can be calculated. The
pre-state is similar to guards calculated in CPN [8] and the
UML state machines [15].
(2) The post-state of a transition can be calculated and used
to allow or refuse the event. This semantics does not exist
in the UML and the CPN.

6.2 Protocol Model with Decision Modules in
the case study

The protocol model of our case study is shown in Figure 2.
The protocol model is executed in the ModelScope tool [13].

A protocol model defines a set of classes of objects. For ex-
ample, Document, Coordinator etc. A finite set of EVENTS
is defined for a protocol model. An event is described as a
set of attributes of different data types including the classes
of the model. For example, the event type CreateDoc is a
tuple of variables of types Document, Coordinator, String
and Date. An instance of the event will contain values of
those types (Listing 1).

Listing 1: EVENT CreateDoc
EVENT CreateDoc
ATTRIBUTES

Document : Document ,
Name : Str ing ,
Deadl ine : Date ,
Coordinator : Coordinator

The life cycle of any object in the protocol model are de-
scribed as a labeled state transition system.

A life cycle module presents an object and is described
with the finite sets STATES, ATTRIBUTES includingNAME
and TRANSITIONS.

A transition is triple (state1, event, state2),
where state1, state2 ∈ STATES and the event ∈ EV ENTS.

If an object is created then the statei = @new.
Listing 2 shows the labelled transition system of the object

Document.

Listing 2: OBJECT Document
OBJECT Document
NAME Name
INCLUDES Deadl ineControl ,

DocumentSubmittable ,
Deadl ineCorrectness ,
DuplicateCheck

ATTRIBUTES
Name : Str ing , Deadl ine : Date ,
Coordinator : Coordinator

STATES created , submitted , c an c e l l e d
TRANSITIONS @new∗CreateDoc= created ,

c r ea ted ∗UpdateDoc=created ,
c r ea ted ∗CreatePart=created ,
c r ea ted ∗AssignPart=created ,
c r ea ted ∗SubmitDoc=submitted ,
c r ea ted ∗CancelDoc=canc e l l e d

Protocol Modelling provides an advanced semantics to
separate decision modules as it permits not only to derive
a state from the pre-states of a transition in life-cycle mod-
ules, but also to predict the post-state of the transition and
use it to derive the state of the decision module.

In order to establish the functional relations between the
states of objects and the abstract states of decision modules,
the decision module is described as a labelled transition sys-
tem with callbacks.

For example, the decision module DeadlineControl con-
tains the transition @any ∗SubmitDoc = notexpired. State
@any literally means any possible combination of the states
of the life cycle modules in the model. State not expired
presents the post state of the transition caused by the event
SubmitDoc. It extends the state space of the model. It
should be calculated using the Deadline attribute of the
Document in question and the current date.

The relation between the DeadlineControl and Document
is specified with the INCLUDE sentence in the Document.
The functional dependency of the attribute Deadline of the
document is defined in the java class DeadlineControl shown
below as a callback. BEHAVIOUR DeadlineControl relates
an instance of the Document with the system clock which is
invisibly present in the model. The system clock gives the
current date; the current date is compared with the deadline
of the document. The derived state ”expired”or ”not expired”
is returned to the protocol machine DeadlineControl.

The decision module DeadlineControl in a protocol model
consists of a description of the labeled transition system
(Listing 3) and the corresponding java class (of the same
name, Listing 4) describing functional relation between the
states of the decision module and the life cycle modules.

Listing 3: BEHAVIOUR DeadlineControl

BEHAVIOUR ! Deadl ineContro l
Allows SubmitDoc only i f
the dead l ine i s not exp i r ed

STATES expired , not exp i r ed
TRANSITIONS @any∗SubmitDoc= not exp i red

Listing 4: Java Callback for BEHAVIOUR Dead-
lineControl
import java . u t i l . Date ;
public class Deadl ineContro l extends Behaviour{

public St r ing ge tS ta t e (){

Date expDate = this . getDate (”Deadl ine ”) ;
Date currentDate = new Date () ;
return currentDate . compareTo (expDate)>0
? ”exp i red ” : ”not exp i red ” ;

}
}

6.3 Properties of Decision Modules in Proto-
col Models

Analysing the decision modules rendered in Protocol Mod-
elling we can name the following properties of decision mod-
ules in Protocol Modelling :

• Modularity: a decision module modularizes the deci-
sion making rules (separates with the reuse purpose);

For example, the module DeadlineControl can restrict
the behaviour of objects Document and Part in the
same way.

• Unidirect dependency : the decision modules can read
the state of other modules, but other modules do not
know how the decision is made (other modules are
oblivious). 1

For example, DeadlineControl reads the value of at-
tribute Deadline of the object Document and predicts
state expired, not expired after event SubmitDoc. The
object Document remains oblivious.

• Mechanism to achieve the properties is the event-driven
design with CSP parallel composition.

Decision modules are incorporated into the whole pro-
tocol model on the basis of their ability to react to
predefined events following the rules of CSP parallel
composition.

The CSP parallel composition of all modules in proto-
col model allows for easy adding and deleting decision
modules. The CSP composition rules are:

- If a event is not recognised by the protocol model, it
is ignored.

- If an event is recognised by the protocol model and
all protocol machines are able to accept this event, the
event is enabled.

- If an event is recognised by the protocol model, but
at least one protocol machine, recognising this event,
is not able to accept it, the event is refused.

Executable protocol models enable separation of decision
modules defined in requirements. This makes requirements
traceable in executable models. There are obvious advan-
tages of modularisation of decision modules for traceability
of requirements and testing and modification of models.

• Traceability. Traceability of requirements in models
is prescribed in standards and considered as a prereq-
uisite of a proper system evolution, modifiability and
long life. The developers should convince themselves
and their customers that the system does what it was

1Obliviousness: the protocol machine into which the deci-
sion module is included does not aware of the behaviour of
the decision module. [5]

required to do. Modularisation of decision modules di-
rectly transforms the declarations or items of require-
ments into modules of the model.

For example, the item ”If all parts are ready, the docu-
ment can be submitted” is traced in the decision mod-
ule Document Submittable.

• Testing. Modularisation of decision modules defines
the testing strategy. Each of the decision modules
specifies a finite set of tests. The set of tests is finite
because the decision module partitions the data into
groups. Each group results in a decision. Testing only
one representative from each group is sufficient to test
the decisions and the variants of behaviour resulting
from this decision.

For example, in order to test the decision module Doc-
ument Submittable: ”If all parts are ready, the docu-
ment can be submitted” two tests should be designed:
(1) a document has been created, at least two parts
have assigned, one part has been submitted and an-
other part has not been submitted;
(2) a document has been created, the parts have as-
signed and all parts have been submitted.

• Modification. In our model we have not separated the
decision module Cancel Document. However, we can
easily modularize cancellation of a document and com-
pose it with the model. A new decision module will
define that ”If a document is in a state created, it can
be canceled or submitted”.

Systematic separation of decision modules from require-
ments to implementation promises to provide advantages for
traceability of requirements, testing and modification of the
implementation. In the next section we investigate if the
decision modules with the same properties as in protocol
models can be implemented in Java.

7. DECISION MODULES IN JAVA
The implementation of decision modules using main-stream

programming languages is the question that needs investi-
gation. For the best of our knowledge, there are no system-
atic implementation approachers for separation of enablers.
We expect that the aspect-oriented languages [10; 17] and
mixin-based languages [1] may contain means for implemen-
tation of enables and decision modules. However, first, we
would like to investigate the implementation in main stream
programming environments.

The research question of this paper is the following:
Is it possible to implement the decision modules using main-
stream object-oriented language techniques in such a way
that the implementation of decision modules would have the
same properties as the decision modules in executable proto-
col models?

For our experiments with the implementation of decision
modules we have chosen Java as one of the mainstream
object-oriented programming languages. First, we investi-
gated if decision modules can be implemented within com-
mon Java paradigm, that is, without using any frameworks
and special libraries. We consider this rather important
because using specialised libraries and frameworks usually
makes the implementation less generic with respect to, for

example, underlying architecture. It can also make the so-
lution platform- and vendor-specific violating a well known
Java principle ”write once, run everywhere”.

7.1 Using object composition
It seems that a simple way to implement decision modules

is to use object composition where they are included in life
cycle modules as object fields. In the Listing 5 both OB-
JECT Document and BEHAVIOUR DeadlineControl are
shown as Java classes, the former includes the latter as an
instance variable.

Listing 5: Implementation using Object Composi-
tion
class Document extends Behaviour{

private St r ing name ;
private Date deadLine ;

/∗ ’INCLUDES’ in the model i s implemented
as object composition ∗/

private Deadl ineContro l dead l ineContro l ;

public Document (S t r ing name , Date deadLine){
this . name = name ;
this . deadLine = deadLine ;
this . s t a t e = ”crea ted ” ;

/∗ i f deadline changes DeadlineControl
has to be somehow not i f i ed ∗/

this . dead l ineContro l =
new Deadl ineContro l (deadLine) ;

}
/∗ This method has to check i t s e l f the state
of DeadlineControl ∗/

public void submitDoc (){
i f (dead l ineCont ro l . g e tSta te () .

compareTo (”not exp i red ”) == 0) {
this . s e t S t a t e (”submitted ”) ;

} else {
this . s e t S t a t e (” c an c e l l e d ”) ;

}
}

}

public class Deadl ineContro l extends Behaviour {

/∗ Date needs to be passed to DeadlineControl ∗/
private Date dead l ine ;
Deadl ineContro l (Date deadLine) {

this . d ead l ine = deadLine ;
}

@Override
public St r ing ge tS ta t e () {

Date expDate = this . getDate (”dead l ine ”) ;
Date currentDate = new Date () ;
return
currentDate . compareTo (expDate) > 0

? ”exp i red ” : ”not exp i red ” ;
}

}
Such an implementation is quite traditional and completely

within the scope of plain Java. However, it’s limitations are
obvious:

• The dependency of modules is bi-directional. The life
cycle moduleDocument is not oblivious about the func-
tionality of the decision module DeadlineControl be-
cause it has to

– specify DeadlineControl as its object field and

– explicitly invoke deadlineControl.getState() method.

• The decision module implementation is also dependen,
because it has to know the exact name, the type, and
the value of a constrained attribute (e.g., Date dead-
line) Consequently, changing and adding new function-
ality within decision modules would require refactoring
and subsequent regression testing of all affected life cy-
cle modules.

• The communication and composition is not event-driven.

The limitations above make such decision modules not
generic enough to be used to implement shared behaviours
among different life cycle objects.

7.2 Using Publisher-Subscriber design pattern
and Java Reflection

Further generalization can be done using Java reflection
and the Publisher-Subscriber design pattern. Java reflection
makes it possible to retrieve the name of a field of a known
type to the decision module. Using Publisher-Subscriber
design pattern, we can implement event-driven mechanism,
which is in the core of the Protocol Modeling approach.

Listing 6 shows the Document class, which now imple-
ments interface SubmitDocEventListener within the Pub-
lisher - Subscriber design pattern. DeadlineControl has now
a new attribute deadlineAttribute, which is used to invoke
the name of the checked attribute deadline of the class Doc-
ument via Java reflection inside the getDate() method. This
method is implemented in the parent class Behaviour.

Listing 6: Implementation using Publisher-
Subscriber design pattern and Java Reflection
public class Document extends Behaviour

implements SubmitDocEventListener {

private St r ing name ;
private Date deadLine ;

/∗ ’INCLUDES’ in the model i s implemented
as object composition ∗/

private Deadl ineContro l dead l ineContro l ;

public Document (S t r ing name , Date deadLine){
this . name = name ;
this . deadLine = deadLine ;
s e t S t a t e (State .NEW) ;

//passes the deadline attr ibute
this . dead l ineContro l =

new Deadl ineContro l (”deadLine ”) ;
}

/∗ Implemetetion of l i s t ene r method
from SubmitDocEventListener inter face ∗/

@Override
public void submitDocEventReceived (){

i f (dead l ineCont ro l . g e tSta te (this) ==
State .NOT EXPIRED) {

this . s e t S t a t e (State .SUBMITTED) ;
}

}

}
public class Deadl ineContro l extends Behaviour{

private St r ing dead l i n eAt t r ibu t e ;

Deadl ineContro l (S t r ing dead l ine) {
this . d ead l i n eAt t r ibu t e = dead l i n e ;

}

public State ge tS ta t e (Behaviour i n s t){
Date expDate =

i n s t . getDate (this . d ead l i n eAt t r i bu t e) ;
Date currentDate = new Date () ;
return

currentDate . compareTo (expDate) > 0
? State .EXPIRED : State .NOT EXPIRED;

}
}

class Behaviour {
/∗ . . . ∗/

public Date getDate (S t r ing dateFieldName){
//Reflect ion to get access to the value
//of dateFieldName of type Date

Fie ld f i e l d ;
f i e l d =

this . g e tC la s s () .
g e tDec la r edF i e ld (dateFieldName) ;

f i e l d . s e tA c c e s s i b l e (true) ;
return (Date) f i e l d . get (this) ;

}
}

In the enhanced code above we also make use of the static
class State containing the enumeration of all possible states
of the objects in the model.

Still, OBJECT Document has to be aware of the function-
ality of the BEHAVIOUR DeadlineControl as it has to in-
voke it inside the event handler submitDocEventReceived().
The event-based communication of modules is implemented.
The dependency of modules is bi-directional.

7.3 Using Aspects within
Enterprise Java Beans Framework

One way to invoke the decision module almost completely
independently from the life cycle object is to use the mod-
ule as an aspect. The standard Java currently has only one
aspect mechanism implemented in the Java Enterprize Edi-
tion (Java EE [4]), which supports Enterprise Java Beans 3
(EJB3) specification. EJB3 supports special objects called
interceptors, which have around invoke aspect semantics.
Interceptors are invoked by the Java EE container run by
an application server. Each EJB may have a set of ”business
methods”which can be subjected to certain additional func-
tionally provided by the container. In our case, it’s the inter-
ceptor functionality. The container is instructed by means
of an EJB3 annotation to call an interceptor before the in-
vocation of a business method of a bean.

In the Listing 7 , class Document is a ”stateless” bean [4],
which the corresponding annotation@Stateless declares. The
only thing the code developer has to do with the life cy-
cle module is to annotate the business method SubmitDoc()
with the @Interceptors annotation. This annotation informs
the application server that before submitting the document
the corresponding deadline control has to be invoked.

Listing 7: Implementation of OBJECT type Docu-
ment as a stateless bean using EJB3 specification
@State l e s s
public class Document implements DocumentRemote {

private St r ing name ;
private stat ic Date deadLine ;
private St r ing s t a t e ;

public Document () {
this . s t a t e = ”@new” ;

/∗ . . ∗/
}

@Interceptor s (Dead l ineCont ro l In t e r c ep to r . class)
@Override
public void submitDoc () {

this . s t a t e = State .SUBMITTED;
}

}
InterceptorDeadlineControlInterceptor (Listing 8) is a Java

class. It has one special method annotated as @AroundIn-
voke. Via its only parameter InvocationContext, it has ac-
cess to the life cycle module instance. The Java reflection
mechanism provides access to the deadLine attribute of the
Document object.

Listing 8: Implementation of DeadlineControl as an
interceptor using EJB3 specification
class Dead l ineCont ro l In t e r c ep to r {

@AroundInvoke
public Object ge tS ta t e (Invocat ionContext i c)
throws Exception {

Date currentDate = new Date () ;

/∗ Using InvocationContext to get the object
and re f l e c t i on to get the value of i t s
”deadLine” attr ibute ∗/

Fie ld f l d = i c . getMethod () .
g e tDec l a r ingC la s s () .

g e tDec la r edF i e ld (”deadLine ”) ;
f l d . s e tA c c e s s i b l e (true) ;
Date dt = new Date () ;
Date expDate = (Date) f l d . get (dt) ;
i f (currentDate . compareTo (expDate) > 0) {

return null ; //Method i s not ca l l ed
} else {

return i c . proceed () ;
}

}
}
The implementation above is generic enough as it allows

using the same decision module among multiple classes of
different types. The unidirect dependency and the event-
based communication and composition can be implemented.
The only restriction remains that the name of the constrained
attribute ”deadLine” has to be the same among all of them.

7.4 Using Enterprise Java Beans
Framework and Decorator design pattern

One may argue that using reflection is not safe and should
be avoided whenever it’s possible. In some cases life cycle
modules needed to be extended by decision modules may
have the same external behaviour, e.g., Document and Part
in our running example. In such a case, decision modules
may be implemented as wrappers to life cycle modules using
the Decorator design pattern. In the EJB3 specification this
pattern is supported as well. Decorators implement a mech-
anism close to interceptors. They add functionality to the
decorated classes. However, instead of implementing cross-
cutting concerns useful for different class types, they extend
the behaviour of a class implementing a certain interface.

In the following Listing 10 the deadline control function-
ality is implemented as a decorator class DocumentDead-
lineControlDecorator. It has the Document or Part class

Technique Modularity Unidirect Mechanism:
dependency Event-Driven

(CSP||)
Object
Composition yes no no
Publ.-Subscr.& partially,
Java Reflection yes state reading:yes yes

obliviousness:no
EJB 3 with
Interceptors yes yes yes
EJB 3 yes,
with Delegation yes for a given yes

interface

Table 1: Protocol Modelling decision modules properties in different Java implementations

injected via their common interface DocumentRemote. The
@Inject annotation uses the dependency injection mecha-
nism [4] to give the decorator access to the decorated class.
The @Delegate annotation gives the container access to all
exposed methods of all the classes implementing the Docu-
mentRemote interface. In our example, the call of the sub-
mitDoc() method of Document happens only if the deadline
is not expired.

Listing 9: Implementation of DeadlineControl using
Delegation within EJB3 specification
@Decorator
public abstract class

DocumentDeadlineControlDecorator
implements DocumentRemote {

@Inject
@Delegate
DocumentRemote doc ;

@Override
public void submitDoc () {

Date currentDate = new Date () ;
i f (currentDate .

compareTo (doc . getDeadLine ()) >0){
System . e r r . p r i n t l n (”Expired ”) ;

} else {
doc . submitDoc () ;

}
}

}

7.5 Properties of decision modules in Java im-
plementations

Table 1 summarises the implementation examples above
with respect to their adherence to the properties of decision
modules in Protocol Modelling as they described in subsec-
tion 6.3.

As one can see, the techniques based on the dependency
injection mechanism provide the implementation means to
produce the decision modules with all the desired properties:
modularity, unidirect dependency with other modules and
event-based communication and composition of modules.

7.6 Future work: AspectJ and mixins
The disadvantage of the decision modules’ implementa-

tion approach using EJB3 is obvious: it’s too heavy. The
overhead of running the application server just for the sake

of support of decision modules is not justified enough. How-
ever, if the system is already implemented as an enterprise
application, this may be a viable solution. EJB3 is sup-
ported by a large variety of certified application servers [16],
both open source and proprietary. In order to completely
avoid a vendor lock the EJB3 platform may be substituted
by a platform independent solution, for example, the Spring
framework [17]. It has an additional benefit, as it supports
the AspectJ [3] specification, which implements the aspect
paradigm much more thoroughly than EJB3 does. This
gives the developer more flexibility in the choice of different
types of aspect semantics: before, after or around invoke.
We didn’t experiment with Spring yet, but a code snippet
like the one below can be already envisioned.

Listing 10: Implementation of DeadlineControl as
an aspect using Spring framework specification
@Aspect
public class Deadl ineContro lAspect {
/∗ . . . ∗/

@Before (
”execut ion (∗ documentmanager . submitDoc (. .)) ”
)
public void

Deadl ineContro l (Jo inPoint j o inPo in t){

/∗ add decis ion module funct ional i ty here ∗/
}

}
Still, Spring is an additional layer on top of an application

server. It is the subject of further investigation, whether or
not AspectJ as a special library for plain Java can be used
to implement decision modules.

Another promising approach would be to program with
mixins [18]: ”When a class includes a mixin, the class im-
plements the interface and includes, rather than inherits,
all the mixin’s attributes (fields, properties) and methods.
They become part of the class during compilation”. This de-
scription is very close to the functionality of BEHAVIOUR
in protocol models. Unfortunately, direct realisation of mix-
ins in mainstream languages is largely absent, at least with-
out making use of special or obscure libraries. Despite some
anecdotal claims, the support of mixins in Java is hardly
expected in foreseeable future as well. The newly released
Java 8 SE specification [7] does not support them either.

A partial solution could be to use newly introduces in Java
8 SE [7] so called ”virtual extension methods”, which simply

allow one to add default method implementations to the
interface not changing the implementation classes. Whether
or not such a feature could be sufficient enough for decision
module implementations needs further experiments.

In our future study we intend to investigate as to how
some known ad-hoc approaches [9] and special libraries [3]
can be used to program decision modules with mixins.

8. CONCLUSION
In this paper we investigated the possibilities of imple-

mentation of decision modules identified in requirements and
modularized in protocol models.

Decision modules separate elements of the control flow
allowing their reuse by different life cycle modules. This fa-
cilitates requirements traceability, test generation and mod-
ification of models.

We have shown a possible way to separate decision models
in declarative models, executable protocol models and Java
programs.

To answer our research question, we conclude that it is
indeed possible to implement functionality of decision mod-
ules using mainstream object-oriented language techniques
so that such implementations would have the same proper-
ties as the decision modules in executable protocol models.
However, we have found that the ways of implementation
of decision modules in modern Java are not ideal. Some of
them are not complete enough, some lead to not necessarily
justifiable overhead. As the functionality of mixins appears
to be very close to the one of BEHAVIOUR in protocol
models, we consider them as promising candidates to imple-
ment decision modules. However, proving this and finding a
generic approach to doing it is the subject of further inves-
tigation.

References
[1] G. Bracha and W. Cook. Mixin-based inheritance. OOP-

SLA/ECOOP ’90 Proceedings of the European conference
on object-oriented programming on Object-oriented program-
ming systems, languages, and applications, pages 303–311,
1990.

[2] Business Rules Group. Defining Business Rules. What
Are They Really? http://www.businessrulesgroup.org/first-
paper/BRG-whatisBR 3ed.pdf, 2000.

[3] Eclipse. ASpectJ project. http://projects.eclipse.org-
/projects/tools.aspectj.

[4] EJB 3.2 Expert Group. JSR-318 Enterprise JavaBeans,
Version 3.2, 2013.

[5] R. Filman, T. Elrad, S. Clarke, and M. Akşit. Aspect-
Oriented Software Development. Addison-Wesley, 2004.

[6] C. Hoare. Communicating Sequential Processes. Prentice-
Hall International, 1985.

[7] JSR-000337 Java SE 8 Release , 2014.

[8] K. Jensen. Coloured Petri Nets. Springer, 1997.

[9] Kerflyn’s Blog. Java 8: Now You Have Mix-
ins? http://kerflyn.wordpress.com/2012/07/09/java-8-now-
you-have-mixins/.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
Proceedings of the European Conference on Object-Oriented
Programming, 1241:220–242, 1997.

[11] A. McNeile and E. Roubtsova. CSP parallel composition of
aspect models. AOM’08, pages 13–18, 2008.

[12] A. McNeile and E. Roubtsova. Aspect-Oriented Develop-
ment Using Protocol Modeling. LNCS 6210, pages 115–150,
2010.

[13] A. McNeile and N. Simons. http://www.metamaxim.com/.

[14] A. McNeile and N. Simons. Protocol Modelling. A Modelling
Approach that Supports Reusable Behavioural Abstractions.
Software and System Modeling, 5(1):91–107, 2006.

[15] OMG. Unified Modeling Language: Superstructure version
2.1.1 formal/2007-02-03. 2003.

[16] Oracle. JavaEE Compatibility. http://www.oracle.com/-
technetwork/java/javaee/overview/compatibility-jsp-
136984.html/.

[17] Spring. Spring Framework. http://projects.spring.io/spring-
framework/.

[18] Wikipedia. Mixin. http://en.wikipedia.org/wiki/Mixin.

