Decision Modules
in Models and Implementations

Serguei Roubtsov! and Ella Roubtsova?

! Technical University Eindhoven,The Netherlands
2 Open University of the Netherlands

Abstract. We define a type of concern called a decision module. Deci-
sion modules can be seen as a specific subset of often changeable business
rules, identified in requirements. We present decision modules as protocol
machines in protocol models. The proven property of such protocol ma-
chines is their unidirectional dependency from other protocol machines.
The composition technique used in protocol models allows for such local
changes in a protocol machine that the behaviour of unchanged machines
in the whole system is preserved.

We analyse different Java implementation techniques in order to find the
possibility of building decision modules having the same properties as
in protocol models. We implement decision modules using object com-
position, reflection, the publisher-subscriber design pattern, interceptors
and aspects. The results of our experiments are illustrated with an ex-
ample of a document submission system. We discuss the functionality
of a generic library that we build for adopting the new style of locally
changeable implementations with separated decision modules.

1 Introduction

Modules are useful instruments for handling complexity of software systems.
Modules are created for various purposes giving birth to different approaches
to modularisation. Among the goals of modularisation are traceability of re-
quirements and ease of code modification, reuse, testing and support of system
evolution.

The major goal of the modularisation technique presented in this paper is
the support of system evolution. The system evolution starts with new require-
ments caused by new business ideas, changes in laws, regulations and business
rules. “International Data Corporation (IDC) asked in a survey: How often do
you want to customize the business rules in your software? 90% of respondents
reported they try to change it annually or more frequently. 34% said monthly...
A conventionally programmed software package can seldom be reprogrammed
this often”[9].

New policies, laws and business rules result in instructions on what to do in
a given situation. An instruction combines a description of the situation, the ex-
pected actions or events and the directives permitting or forbidding events in the
described situation. A model or implementation of such an instruction usually

combine states of system objects, as well as events and control flow constructions
corresponding to the description. In this paper, we define such a combination as
a decision module. If a business rule could be presented as a decision module in
models and implementations and if this module could be locally changed with-
out the necessity to change the rest of the model or implementation, then such
a modularisation would ease system evolution. However, the separation of such
modules is not a common practice in conventional modelling and implementation
approaches.

The most commonly used modularization is the separation of object life
cycles. This means that a domain concept is modelled as a class of objects.
Each object is created, exists in some states, makes decisions on the basis of
its states and recognised events. Eventually, the object is destroyed or deleted.
Modularisation of object life cycles hides the states of objects and process control
points inside objects. To implement a new policy, modify a program or generate
a test, the control points inside life cycle modules have to be analysed. As a
result, each modification of policies and business rules requires re-modelling and
re-implementing all the life cycle modules contributing to the decisions made by
these policies and business rules.

The research on business rules [4, 10] investigates the ways of modularisation
of business rules and the methods of their integration. However, the business
rules engines are usually based on the workflow concept and the Business Process
Modeling Language (BPML). They integrate the entire control flow and, thus,
do not provide the possibility for local changes of the business rules.

There is a modelling technique called Protocol Modelling that supports the
separation of the modules called “behaviours” that derive own state from the
states of different objects and combine event descriptions with control flow ele-
ments. Protocol Modelling is based on the CSP parallel event-based composition
technique [8] extended for models with data [22]. This composition technique,
implemented in a composition engine, supports separation and composition of
both life cycle modules and “behaviours”. The property of observational con-
sistency proven in Protocol Modelling for modules and the system they form
perfectly supports local changes of modules without the need to validate the
rest of the model. Thus, the properties of “behaviours” facilitate model chang-
ing and testing. The same properties are desirable for the decision modules both
in models and implementations. In this paper we intend to investigate if it is
possible to protocol model decision modules and implement them using the avail-
able object-oriented techniques in such a way that the implementations would
have the same properties of “behaviours” as in executable protocol models.

The rest of the paper is structured as follows.
Section 2 defines a decision module.
Section 3 presents related work.
Section 4 introduces a case study used for illustration of our modularization vi-
sion.
Section 5 shows how the decision modules are identified in requirements.
Section 6 identifies the decision modules in executable protocol models. It ex-

plains the composition of decision modules and life-cycle modules and recognizes
the attractive properties of modules in Protocol Modelling.

Section 7 applies different software development techniques (object composition,
reflection, the publisher-subscriber design pattern, interceptors and aspects) for
implementation of decision modules and evaluates how the implementations pre-
serve the desired properties of protocol models.

Section 8 discusses the advantages of the proposed approach for the modelling
and implementation as well as tackling the obstacles in its adoption.

Section 9 concludes the paper and draws perspectives for the future work.

2 Definition of Decision Module

In this section, we give a notation independent definition of a decision module.
Later in section 6, a decision module will be defined as a protocol machine.

A model of a system is described as a set of interacting objects. A behaviour
of an object is its description in terms of states and transitions. The behaviour
of a system of objects is defined on the basis of the states and events of objects.
However, a system has its own goals and the behaviour of the system is often
different from the disjoint union of the individual behaviours of objects. Decision
modules direct behaviours of objects in particular combinations of states towards
system goals.

Definition 1. A decision module represents a specification of an instruction on
how to make the decision about allowing or forbidding certain events.

— The instruction is defined on a set of objects selected in a model. The type
of each selected object contains specifications of its possible states and the
events allowed in the specified states. All possible combinations of the states
of selected objects and a subset of the union of all events of the set of selected
objects are used for specification of a decision module.

— The instruction can be seen as an “if (case)”- construction

if (State Function() = value) then allow Event;

The domain of the State Function() is defined by the partitioning of the
state space of the set of selected objects into disjoint subsets. The partition-
ing can be done before (or after) the Event in hand.

The range of the state function is a set of names of these disjoint subsets
presented with a nominal variable called “state of the decision module”. The
nominal values are the abstractions (often - business names) of the conditions
for a decision.

For example, let’s consider a decision module which can belong to an object
Aircraft. Tt’s state function:

If(State Function() = “All Passengers Are On Board"), then allow Start.

The Aircraft’s behaviour is coordinated with the behaviors of its Passengers.
The selected event is Start. The state space has been partitioned before the Start
into two subsets ‘All Passengers Are On Board” and ‘Not All Passengers Are
On Board”.

We separate a decision module as a module because it can be associated (in
terms of programming - reused) with different objects as a separate entity. In
our example, it can be associated with an Aircraft or, say, a Bus.

We name this module a decision module because it forms the condition for the
acceptance or refusal of an action processing an event. It is not a pre-condition
because it can be derived both from the pre- and post-states of the actions in
the life cycles of the set of selected objects.

A decision module cannot be classified as an object. An object owns (may
change independently) its state, whereas the state of a decision module is derived
from the states of other modules. A decision module only permits or forbids the
actions specified in objects from the set of selected objects.

A decision module does not fit exactly into the definition of a crosscutting
concern or an aspect [7]. It can be seen as a high-level management concern or
a control concern. It can be crosscutting or not.

Finally, what we can observe about a decision module is that:

— it is recognized and can be separated at the early stages of system develop-
ment such as requirements engineering;

— it is often not separated as an entity in conventional models and implemen-
tations;

— it tends to undergo frequent changes at the later stages such as maintenance
and evolution.

3 Related Work

Modules similar to our decision modules have been also recognized in Business
Rules community. These modules are called enablers [1, 3].

“An enabler is a type of action assertion which, if true, permits or leads to the
existence of the correspondent object.” An enabler has varying interpretations
depending on the nature of the correspondent object: it may permit (i.e. enable)
the creation of a new instance; permit another action assertion; permit an action
execution [3] and is often called an integrity constraint, a condition or a test.

The enablers represent only a subset of our decision modules because the
decision modules

— describe assertions of a set of actions using the state space of a set of selected
objects as an input;

— can both enable and disable (refuse) an action execution, the creation of a
new instance and another action assertion.

In rather advanced form, such an approach to modularization can be seen
in protocol models [20]. The modules called “behaviours”, separated in protocol
models, possess the following properties:

— use state functions that are able to read (but not change) attributes, an
event pre-state of other modules [22];

— use state functions that are able to predict the post-state of other modules
for the given event [22];

— often use the control flow constructions to permit events at specified values
of the state function;

— are composed with different life cycle modules (objects) in such a way that
the life cycle modules do not know (remain oblivious) about the “behaviours”
and do not need to be changed as the “behaviours” are added or changed [19,
20].

Protocol modeling makes use of an extended form of the Communicating Sequen-
tial Processes (CSP) [8] parallel composition of modules which possess internal
data. The CSP parallel composition produces observationally consistent models.
This means that a protocol model allows one to modify modules locally, add and
delete modules so that the behaviour of unchanged modules is preserved in the
behaviour of the whole system [19].

In section 6, we will show that the decision modules are easily separated in
protocol models as “behaviours” or, in other words, as protocol machines with
derived states.

4 Case study:
Preparation of a document by several participants

We illustrate the proposed modularization with a case study. It will be used
to show how the decision rules declared in requirements can be transformed
into modules of executable synchronous protocol models. It will be also used
to illustrate our investigation of the applicability of Java-based techniques for
implementation of decision modules.

Let us consider a system that controls a preparation of a document, e.g. a
proposal, a paper or a report, by several participants. One of the participants
usually plays the role of the coordinator responsible for submitting the document.
There is a deadline for the document submission.

The coordinator creates the parts of the document and chooses participants.
Each part is assigned to a participant. A part has its own deadline before the
deadline of the document and should be submitted by the participant so that
the coordinator has time to combine parts and submit the document.

If a participant misses the part deadline, the coordinator sends a reminder to
the delaying participant. The coordinator can change the deadline or assign the
document to another participant. Only the coordinator can cancel the prepara-
tion of the document.

Act Coordinator

- If a participant has missed the part deadline, the coordinator - A coordinator is created.
may assign the part to the same participant with a new - The preparation of the document can be always cancelled by the
deadline or to another participant. coordinator.

= Cancel Document, Create
Create Participant, Assign Part Create Participant, Create Part, Assign Part,

adt > Coordinator Submit Part, Submit Document
——p(created >

DeadlineCorrectness
- The deadline of the document is correct, if it is in the future. Document
- A document is created with its deadline.

Create Document
» correct Create
Eg)cu‘;?em Cancel Document, Submit Document
i
cacine created >

Document Submittable
- If all parts are ready, the document can be submitted.

Submit Document Part
@ > - A part of the document is created
- Each part has a deadline.

- Each part is assigned to a participant.

A

Deadline Control
- A document can be submitted before the deadline. Create Part

(Deadiine) Assign Part, Submit Part
Submit Document - created
>

A 4

Participant
- - A participant is created.
Deadline Part Correctness - Each part is assigned to a participant.
- The part deadline is correct, if it is in the future but before the - A participant submits the assigned part.

document deadline.
Create

Create Part Participant
> created

Assign Part, Submit Part

A 4

Fig. 1. Declarative specification

5 Decision Modules in Requirements

In our experience of requirements engineering we have found that requirements
often describe the decision modules informally.

We start with an observation that almost every sentence of requirements
presents a snapshot of the desired system behaviour. A snapshot is a visible
abstract state captured after or before an event. Figure 1 presents all the snap-
shots corresponding to the case study in section 4 as a declarative specification.
We depict an abstract system state as a double line oval. An oval may have an
ingoing or outgoing arc labeled with an action that can happen.

For example, the declaration “A document can be submitted before the dead-
line” can be presented as a decision rule or a decision module DeadlineControl.
It shows that the event Submit Document can only be accepted if the deadline
is “not expired”. In this case, the arc is ingoing.

If an event can only be accepted in the described state, then the arc is
outgoing. The example is the decision module Document Submittable: After all
parts are ready, the document can be submitted.

The state descriptions in decision modules are abstracted from the life cycle of
entities of the system. An abstract state may present the state of a set of system
concepts, a subset of states of the system, etc. For example, state submittable of
the decision module Document submittable depends on the states of all parts of
the document.

Often the decision modules give instructions or polices on what to do in a
situation described as an abstract state. For example, Act presents a possibility
to progress by creating a new participant (event Create Participant) who can
write a part of the document (event Assign Part).

The elements of the life cycles of entities in the model are also present in
requirements and shown in Figure 1 as declarations. However, the states in such
description are not abstract, they are the states of objects. We depict a state of
an object as a single line oval. For example, we can read in requirements what
an instance of the Coordinator can do when it is in state “created”. It can Create
Document, Submit Document, Create Participant, Create Part, Assign Part and
Cancel Document.

6 Decision Modules in Protocol Models

The declarative specifications are not executable. However, there is a way to
present decision modules as modules of executable protocol models. We show this
way of modularization after a short introduction of Protocol Modelling developed
by A.McNeile [22].

6.1 Protocol Modeling

Protocol Modeling splits the Universe into a system and its environment. A
protocol model represents the modelled system. The environment submits events
to the system. The system may change its state reacting to events.

The building blocks of a protocol model [22] are protocol machines and
events. They are instances of, correspondingly, protocol machine types and event
types. Each protocol machine “recognises” a finite set of event types, i.e. uses
the names of these event types in the specification of a protocol machine type.

In order to facilitate reuse, there are two types of protocol machines: Objects
and Behaviours. Behaviours cannot be instantiated on their own but may extend
functionality of Objects. In a sense, Behaviours are similar to mixins or aspects
in programming languages [2, 20].

A protocol machine type is an LTS (Labelled Transition System) extended
with attributes and call-backs to enable modelling with data:

PM,; = (ngsi7Ei7naAi7CBi7>7 where

Y is the initial state;

— S; is a non-empty finite set of states;

— FE; is a finite set of transition labels being the “recognized” event types e;,
coming from the environment. The set can be empty.

— T, CS; x BE; x S; afinite set of transitions:

t = (8z,€,8y), Sz,5y €5;, e € E;. The set of transitions can be empty. The

states are updated by transitions.

— A; is a finite set of attributes of the specified types. The standard data
types such as String, Integer, Currency, Date, etc. plus the types of protocol
machines can be used for specification of attributes. The attributes are the
data containers of a protocol machine. A protocol machine Object contains
at least one attribute, the Name of the Object. The set of attributes of a
Behaviour protocol machine can be empty.

— CBy(PM,...,PM,,FEy,....E,;) = (PMy,...,PM,, FE1,...E,)
is a callback function. PM;, ..., PM,, are the protocol machines of the pro-
tocol model. Fy,..., E,, are the events of the protocol model. We list all
protocol machines of the protocol model and the events “recognized” by
PM; as the arguments of the callback function CB; because the elements
of all protocol machines and all “recognized” events can be used as inputs
for updating the values of the attributes, states and events of the protocol
machines. These values can be updated using the callback function only as
a result of a transition, i.e. as a result of event acceptance.

If no calculation is needed for updating attributes of the protocol machine
PM;, the set of callback functions is empty.

“Recognized” events are modelled from the system perspective. Each event
belongs to a specified type telling the system what kind of attributes can be
found in this event.

An event type is a tuple e = (A°, CB¢), where

— AF° is a finite not empty set of attributes of the event.

- CB¢(PMy,...,PM,,F1,...Ey,) = (PMy,...,PM,, E1, ..., Ey)
is a callback function corresponding to this event. The callback function
for an event is used if the protocol model generates other events using the
attributes of this event.

Within Protocol Modelling, callback functions are the instruments for data
handling. In the ModelScope tool [21] supporting the execution of protocol mod-
els, the callbacks are coded as Java classes with methods changing and/or re-
turning the values of attributes and states of instances of protocol machines.
They may also change attributes of events and generate event instances.

CSP parallel composition.

A protocol model (PM) is a CSP parallel composition of a finite number
of instances of protocol machines. A PM is also a protocol machine, the set
of states of which is the Cartesian product of states of all composed protocol
machines [22]:

neN
PM = ||PMl = (Sg,si,Ei,Tli,Ai,CBi) = (So,S,E,T,A,CB,).
1=1

Module of Synchronous Composition (CSP parallel Composition)

@ All machines that recognize E are in state, where they are able to accept E) }——}
Act DESIRED: CreateDoc,
CreateParticipant, Coordinator UpdateDoc,
AssignPart SubmitDoc,
._» CreateParticipant,
CreatePart,
i’

CreateCoordinator AssignPart,
CancelDoc,

DeadlineCorrectness

CreateDoc,

Document Submittable

SubmitDoc

submittable

DeadlineControl

Document UpdateDoc(Deadline),
CreatePart,
AssignPart

X

CreateDoc

Duplicate Check

SubmitDoc Part DeadlinePart=
CteatePart
creates submitted
DeadlinePartCorrectness i
CreatePart, StbmitPart
AssignPart
(correct) Participant
CreateParticipant

EVENT CreatePart
ATTRIBUTES

Part:Part, Name:String,
DeadlinePart:Date,
Coordinator:Coordinator,
Document:Document,

EVENT SubmitPart
ATTRIBUTES
Part:Part,
Participant:Participant

EVENT AssignPart
ATTRIBUTES
Document:Document,
Part:Part, DeadlinePart:Date,
Participant:Participant,
Coordinator:Coordinator

created

AssignPart,
SubmitPart

EVENT CreateParticipant
ATTRIBUTES
Participant:Participant,
NameParticipant:String,
Coordinator:Coordinator

EVENT CreateCoordinator
ATTRIBUTES
NameCoordinator:String,
Coordinator:Coordinator

GENERIC Create
MATCHES E- One of the specified

CreateDoc, events
CreatePart[Document]

Fig. 2. Executable Protocol Model

EVENT CreateDoc
ATTRIBUTES
Document:Document,
Name:String, Deadline:Date,
Coordinator:Coordinator

EVENT UpdateDoc
ATTRIBUTES
Document:Document,
Name:String,
Deadline:Date,
Coordinator:Coordinator

EVENT SubmitDoc
ATTRIBUTES
Document: Document,
Coordinator:Coordinator

EVENT CancelDoc
ATTRIBUTES
Document:Document,
Coordinator:Coordinator

n
so = JsY is the initial state;
i=1
n
S =]15; is the set of states;
1=1
n
E =|JE; is the set of events;
i1=1
n
A =JA; is the set attributes of all machines;
i=1
n
CB = JCB? is the set of callbacks of all machines.
i=1
The set of transitions 7' of the protocol model is defined by the rules of
the CSP parallel composition [8]. The rules synchronise transitions of protocol
machines.
The CSP composition rules in Protocol Modelling are:

— If an event is not recognised by the protocol model, it is ignored.

— If an event is recognised by the protocol model and all protocol machines,
recognising this event, are able to accept it, the event is enabled.

— If an event is recognised by the protocol model, but at least one protocol
machine, recognising this event, is not able to accept it, the event is refused.

As the result, the composition may contain the union of transitions of composed
protocol machines if the sets of the “recognised” events of protocol machines are
disjoint. If the sets of the “recognised” events are not disjoint, the set of allowed
transitions is defined using the Cartesian product [[S; of states of machines,
the set of events and the rules of CSP parallel composition. An algorithm of
calculation of the set of transitions can be found in [26].

Dependent protocol machines. Derived States.

Transitions 7T; of a protocol machine PM; enable updates only its own states;
namely, those in S;. On the other hand, protocol machines can read the states of
other protocol machines, although cannot change them. Callback functions C'B;
are used to read states of specified protocol machines and update attributes and
calculate derived states of protocol machines of type Behaviour.

Callback functions create dependencies between protocol machines. The de-
pendency means that one protocol machine (usually the included protocol ma-
chine of type Behaviour) needs to read the state of other protocol machines to
calculate its own state. Such calculated states are called derived states, which
distinguishes them from the stored states denoted in the model [22]. A protocol
machine with derived (calculated) states is called dependent.

A transition of a dependent protocol machine contains a derived state and
an event, permitted in this state. The derived state can be either an input or
output state of this event.

As all protocol machines are composed with he same CSP parallel composi-
tion rules, a dependent protocol machine specifies an extra “restrictions” on the
acceptance of an event by other protocol machines of the protocol model. Note
that these “restricted” protocol machines are not necessarily the same protocol
machines, states of which have been read to derive the state of the dependent
protocol machine.

The ability of protocol machines to read the state of other protocol machines
is an asset for separation of decision modules. Decision modules need this to read
the information of other modules and use it to specify a decision about event
acceptance.

Further, there are two types of derived states possible in dependent machines,
which can be used in decision modules:

(1) The pre-state of a transition which can be calculated. The pre-state is similar
to guards calculated in Coloured Petri Nets (CPN) [12] and the UML state
machines [23].

(2) The post-state of a transition which can also be calculated. We mentioned
already that the callback functions can update the values of the attributes, states
and events only as a result of a transition, i.e. as a result of event acceptance. If
a post-state refuses the event caused its calculation, the event is rolled back, i.e.
the system sends a messages about the post-state value and it is returned into
the state that preceded to the event acceptance. This semantics does not exist
either in the UML, CPN or BPMN. An example of a decision module using a
post-state will be shown in the next sub-section.

6.2 Protocol Model with Decision Modules in the Case Study

The protocol model of our case study is shown in Figure 2. This protocol model
can be executed in the ModelScope tool [21].

A finite set of EVENTS is defined for this protocol model. For example, the
event type CreateDoc is a tuple of variables of types Document, Coordinator,
String and Date. The elements Document and Coordinator are the protocol
machines of types Document and Coordinator correspondingly (Listing 1).

Listing 1. EVENT CreateDoc

EVENT CreateDoc

ATTRIBUTES
Document : Document ,
Name: String ,
Deadline : Date,
Coordinator: Coordinator

As we see, the event is described as a set of attributes of standard data types
and the types of protocol machines Coordinator and Document.

The life cycles entities (objects) Coordinator, Participant, Part and Docu-
ment are specified as protocol machines. Figure 2 shows the protocol machines
graphically.

Listing 2 shows the textual specification of a protocol machine of type Doc-
ument. Before its creation, any object is in the state @new. Accepting events,
any object transits to states of its life cycle. For example, being in state Qnew
and accepting event CreateDoc an object of type Document transits from state
@new to state created.

The corresponding transition is depicted as follows: @new*CreateDoc= created.

Listing 2. OBJECT Document

OBJECT Document
NAME Name
INCLUDES DeadlineControl ,
DocumentSubmittable ,
DeadlineCorrectness ,
DuplicateCheck
ATTRIBUTES
Name: String , Deadline : Date,
Coordinator: Coordinator
STATES created , submitted, cancelled
TRANSITIONS @newx* CreateDoc= created ,
createdxUpdateDoc=created ,
createdxCreatePart=created ,
createdxAssignPart=created ,
created xSubmitDoc=submitted ,
createdxCancelDoc=cancelled

Using the protocol machines presenting the life cycles of system entities, the
decision modules can be specified. In order to establish the functional relations
between the states of life cycle modules (objects) and the derived states of de-
cision modules, the decision module is described as a labelled transition system
with callback functions.

For example, the decision module DeadlineControl in our protocol model
consists of a description of the labeled transition system (Listing 3) and the
corresponding java class (of the same name, Listing 4) describing functional
relation between the states of the decision module and the life cycle modules.

The relation between the DeadlineControl and Document is specified with
the INCLUDE sentence in the Document (Listing 2). To facilitate reuse, the
DeadlineControl decision module can be included in any other object that have
an attribute Deadline.

Listing 3. BEHAVIOUR DeadlineControl

BEHAVIOUR ! DeadlineControl
Allows SubmitDoc only if

the deadline is not expired
STATES expired , not expired
TRANSITIONS @any+SubmitDoc= not expired

Listing 4. Java Callback for BEHAVIOUR DeadlineControl

import java.util.Date;
public class DeadlineControl extends Behaviour{
public String getState (){
Date expDate = this.getDate(” Deadline”);
Date currentDate = new Date();
return currentDate.compareTo (expDate)>0
7?77 expired” :"not_expired”;

The decision module Deadline Control contains transition Qany*Submit Doc =
not expired. State Qany literally means any possible combination of the states
of the life cycle modules in the model.

The functional dependency between Deadline Control and the attribute Dead-
line of the Document is defined in the java class Deadline Control shown in List-
ing 4 as a callback. Behaviour DeadlineControl relates an instance of the Docu-
ment with the system clock which is invisibly present in the model. The system
clock gives the current date. The current date is compared with the Deadline of
the Document. The derived state “expired” or “not expired” is returned to the
protocol machine Deadline Control.

The decision module DeadlineControl is an example of the Behaviour that
calculates the post-state after proceeding of the event SubmitDoc. If the derived
state of DeadlineControl after processing an event of type SubmitDoc has the
value “expired”, then the event is rolled back and the system returns into the
state before processing of this event.

Figure 2 also shows the examples of the Behaviours that use the pre-state
of other protocol machines for making the decision. For example, Behaviour
Document Submittable is included into the Object Document. Document Sub-
mittable derives its state submittable only if all Parts of the Document are in
state submitted (Listings 5 and 6).

Listing 5. BEHAVIOUR DocumentSubmittable

BEHAVIOUR ! DocumentSubmittable
Ensures that a document cannot be
#submitted if it has unfinished Parts
ATTRIBUTES !Document Status: String
STATES submittable, not submittable
TRANSITIONS submittable*SubmitDoc=Qany

Listing 6. Java Callback for BEHAVIOUR DocumentSubmittable

public class DocumentSubmittable extends Behaviour {
public String getState() {
boolean allSubmitted =true;
Instance [] myParts =
this.selectByRef (”Part” ,” Document”) ;
if (myParts.length==0)
{allSubmitted = false;}
for (int i = 0; i < myParts.length; i++) {
if ((myParts[i].getState(”Part”).equals(”created”)))
allSubmitted = false;

}

return allSubmitted?” submittable” :” not_submittable” ;
}
public String getDocumentStatus () {

return this.getState (” DocumentSubmittable”);

}

Figure 2 presents six decision modules: DeadlineCorrectness, DeadlinePart-
Correctness, DeadlineControl, Document Submittable, Act, Duplicate check. The
arc with the half-dashed triangle end shows the INCLUDE relation.

Several decision modules may be included into the same object. For exam-
ple, four decision modules are included into object Document. All the decision
modules processing the submitted event need to be executed to make a deci-
sion about its proceeding. Any event proceeds only if all the protocol machines
recognising this event permit its proceeding.

6.3 Properties of Decision Modules in Protocol Models

We can name the following properties of decision modules in Protocol Models:

1. Modularity: a decision module localises the decision making rules (separates
them for the purpose of reuse);
For example, the module DeadlineControl can restrict the behaviour of ob-
jects Document and Part in the same way.

2. Unidirectional dependency: the decision modules can read the state of other
modules, but other modules do not know how the decision is made (other
modules are oblivious [7]).
For example, DeadlineControl reads the value of attribute Deadline of the
object Document and predicts state ezpired, not expired after event Submit-
Doc. The object Document remains oblivious.

3. Mechanism to achieve the properties is event-driven with CSP parallel com-
position.

Decision modules are incorporated into the protocol model on the basis of
their ability to react to predefined events following the rules of CSP parallel
composition. The CSP parallel composition of all modules in protocol model
allows for local modification, adding and deleting of modules without affect-
ing the ordering in the specified behaviour sequences of existing modules.

Executable protocol models enable separation of decision modules defined in
requirements. Requirements become traceable in executable models. There are
obvious advantages of modularisation of decision modules for traceability of re-
quirements and testing and modification of models.

Traceability. Traceability of requirements in models is prescribed in standards
and considered as a prerequisite of a proper system evolution, modifiability and
long life. The developers should convince themselves and their customers that
the system does what it was required to do. Modularisation of decision modules
directly transforms the declarations or items of requirements into modules of
the model. For example, the item “If all parts are ready, the document can be
submitted” is traced in the decision module Document Submittable.

Testing. Modularisation of decision modules defines the testing strategy. Each
of the decision modules specifies a finite set of tests. The set of tests is finite
because the decision module partitions the data into groups. Each group results
in a decision. Testing only one representative from each group is sufficient to
test the decisions and the variants of behaviour resulting from this decision. For
example, in order to test the decision module Document Submittable: ”If all parts
are ready, the document can be submitted” two tests should be designed:

(1) a document has been created; at least two parts have been assigned; one part
has been submitted and another part has not been submitted;

(2) a document has been created; the parts have been assigned and all parts
have been submitted.

Modification. In our model we have not separated the decision module Can-
cel Document. However, we can easily modularize cancellation of a document
and compose it with the model. A new decision module will define that “If a
document is in a state created, it can be canceled or submitted”.

Systematic separation of decision modules from requirements to models and
implementation promises advantages for traceability of requirements, testing and
modification of the implementation. In the next section we investigate if the deci-
sion modules with the same properties as in protocol models can be implemented
using such a mainstream programming language as Java.

7 Decision Modules in Java

The implementation of decision modules using mainstream programming lan-

guages is the question that needs investigation. To the best of our knowledge,

there are no systematic implementation approaches for separation of enablers.
The research question of this paper is the following:

Is it possible to implement the decision modules using mainstream object-oriented

language techniques in such a way that the implementation of decision modules
would have the same properties as the decision modules in executable protocol
models, namely:

- modularity;

- unidirectional dependency;

- event-based composition?

For our experiments with the implementation of decision modules we have
chosen Java as one of the mainstream object-oriented programming languages.

First, we investigated if decision modules can be implemented within com-
mon Java paradigm, that is, without using any frameworks and special libraries.
We consider this rather important because relying upon specialised libraries and
frameworks usually makes the implementation less generic with respect to, for
example, underlying architecture. It can also make the solution platform- and
vendor-specific violating a well known Java principle ”write once, run every-
where”.

Further, we also investigate the expressivity of Enterprise Java Beans (EJB3)
and aspect-oriented Java (AspectJ) [15,27] for implementation of enables and
decision modules.

7.1 Using Object Composition

It seems that a simple way to implement decision modules is to use object
composition where they are included in life cycle modules as object fields. In
the Listing 7 both OBJECT Document and BEHAVIOUR, DeadlineControl are
shown as Java classes, the former includes the latter as an instance variable. As
we said in 6.1, the difference between life cycle modules(objects) and behaviours
in Protocol Modelling is that behaviours cannot be instantiated on their own
but rather extend functionality of objects. In the implementations in this paper,
we do not implement this restriction. That’s why there is no need in a separate
class Object and both classes extend the same parent class Behaviour.

Listing 7. Implementation using Object Composition

class Document extends Behaviour{
private String name;
private Date deadLine;
/x INCLUDES’ in the model is implemented
as object composition x/
private DeadlineControl deadlineControl;
public Document(String name, Date deadLine){

this.name = name;
this.deadLine = deadLine;
this.state = "created”;

/xif deadline changes DeadlineControl
has to be somehow notified x/

this.deadlineControl =
new DeadlineControl(deadLine);
}
/+* This method has to check itself the state
of DeadlineControl */
public void submitDoc(){
if (deadlineControl. getState ().

compareTo(”not_expired”) = 0) {
this.setState (”"submitted”);
} else {

this.setState (" cancelled”);

}
}

public class DeadlineControl extends Behaviour {

/x Date needs to be passed to DeadlineControl x/
private Date deadline;
DeadlineControl (Date deadLine) {
this.deadline = deadLine;
}

@QOverride
public String getState () {
Date currentDate = new Date();
return
currentDate.compareTo(deadline) > 0
? 7expired” : "not.expired”;

Such an implementation is quite traditional and completely within the scope
of plain Java. However, its limitations are obvious:

— The communication of objects is not event-driven.

— The dependency of modules is bi-directional. The life cycle module Document
is not oblivious about the functionality of the decision module DeadlineCon-
trol because it has to

e specify DeadlineControl as its object field and

e explicitly invoke the deadlineControl.getState() method.

e even the state of the decision module DeadlineControl “not expired” is
used in the code of the life cycle module Document.

— The implementation of the decision module is also dependent, because it has

to know the exact name, the type, and the value of a constrained attribute
(e.g. Date deadline.)

Consequently, changing (for example, changing the module name or the state
name “not expired”) or adding new functionality within decision modules would
require refactoring and subsequent regression testing of all affected life cycle
modules. The limitations above make such decision modules not generic enough
to be used to implement shared behaviours among different life cycle objects.

7.2 Using Publisher-Subscriber Design Pattern and Java Reflection

Further generalization can be done using Java reflection and the publisher-
subscriber design pattern. Java reflection makes it possible to retrieve the name
of a field of a known type to the decision module. Using publisher-subscriber
design pattern, we can implement event-driven mechanism, which is in the core
of the Protocol Modeling approach.

Here we implemented the generic functionality of the behaviour protocol
machines (section 6) in the parent class Behaviour. In particular, Behaviour
implements the reflection on all allowed generic data types. The Behaviour class
can be put in a separate Java package among other application independent
elements of Protocol Modeling such as Object, State, Attribute, or Event. This
package - we will further refer to it as a “behaviour engine” - should also include
generic Protocol Modelling mechanisms such as object instantiation and the CSP
composition mechanism. We will introduce the latter in the following subsections.

Listing 8 shows the Document class, which now implements interface Sub-
mitDocFventListener within the publisher-subscriber design pattern.

DeadlineControl has now a new attribute deadlineAttribute, which is used
to invoke the name of the checked attribute deadline of the class Document via
Java reflection inside the getDate() method. This method is defined in the parent
class Behaviour.

Listing 8. Implementation using publisher-subscriber design pattern and Java Reflec-
tion

class Behaviour {

/x

The rest of BEHAVIOUR functionality
o/
public Date getDate(String dateFieldName){
//Reflection to get access to the wvalue
//of dateFieldName of type Date
Field field;
field =
this.getClass ().
getDeclaredField (dateFieldName);
field .setAccessible (true);

return (Date) field.get(this);

public class Document extends Behaviour
implements SubmitDocEventListener {

private String name;

private Date deadLine;
/x "INCLUDES’ in the model is implemented
as object composition x/

private DeadlineControl deadlineControl;

public Document(String name, Date deadLine){
this.name = name;
this.deadLine = deadLine;
setState (State NEW);
//passes the deadline attribute
this.deadlineControl =
new DeadlineControl(”deadLine”);

/+x Implementation of listener method
from SubmitDocEventListener interface x/
@OQOverride
public void submitDocEventReceived (){
if (deadlineControl.getState (this) —
DocManState .NOT_EXPIRED) {
this.setState (DocManState .SUBMITTED) ;

}

public class DeadlineControl extends Behaviour{
private String deadlineAttribute;

DeadlineControl (String deadline) {
this.deadlineAttribute = deadline;
}

public DocManState getState (Behaviour inst){

Date expDate =
inst.getDate(this.deadlineAttribute);

Date currentDate = new Date ();

return

currentDate .compareTo (expDate) > 0
? DocManState . EXPIRED : DocManState . NOT_EXPIRED;

In the enhanced code above we also make use of the class DocManState,
which specialises the application dependent functionality of the behaviour en-
gine’s generic class State and contains the enumeration of all possible states of
the objects in the Document Manager model.

The publisher-subscriber design pattern implements the Protocol Modelling
event-based communication of modules. Java reflection allows reducing the de-
pendency of the decision module on a particular life cycle module.

Still, OBJECT Document has to be aware of the functionality of the BE-
HAVIOUR DeadlineControl as it has to invoke it inside the event handler sub-
mitDocEventReceived(). The dependency of modules is bi-directional.

7.3 Using Interceptors within Enterprise Java Beans Framework

A decision module can be seen as a managerial concern or a control concern. In
mainstream languages, concerns are often implemented using the aspect mech-
anism.

We intend to investigate if the aspect mechanisms in Java can support im-
plementation of decision modules that have only unidirectional dependency with
life cycle modules, that is, the decision modules can read the state of the life
cycle modules and permit or forbid proceeding of events while the life cycles are
oblivious to decision modules.

The standard Java currently has only one aspect mechanism implemented
in the Java Enterprise Edition (Java EE [6]), which supports Enterprise Java
Beans 3 (EJB3) specification. EJB3 supports special objects called interceptors,
which have the “around invoke” aspect semantics. Interceptors are invoked by
the Java EE container run by an application server. Each EJB may have a set of
“business methods” which can be surrounded by additional functionally provided
by a decision module via container. The decision module is implemented as an
interceptor. The container is instructed by an EJB3 annotation @Interceptors
to call an interceptor before the invocation of a business method of a bean.

In the Listing 9, the life cycle module is implemented as class Document. It is
a “stateless” bean [6], which the corresponding annotation @Stateless declares.
The only thing the code developer has to do with the life cycle module is to choose
the business method (or methods) that should be intercepted and annotate this
business method with the @Interceptors(DeadlineControllnterceptor.class) an-
notation. In our case, this is the SubmitDoc() method. This annotation informs
the application server that before submitting the document the corresponding
deadline control interceptor has to be invoked.

Listing 9. Implementation of OBJECT type Document as a stateless bean using EJB3
specification

@Stateless
public class Document implements DocumentRemote {

private String name;
private static Date deadLine;
private String state;

public Document () {
this.state = "@new” ;

}

@Interceptors(DeadlineControllnterceptor.class)
@Override
public void submitDoc() {
this.state = DocManState.SUBMITTED;
}

Interceptor DeadlineControllnterceptor (Listing 10) is a Java class. It has
one special method annotated as @AroundInvoke. Via its only parameter Invoca-
tionContext, it has access to the life cycle module’s instance. The Java reflection
mechanism provides access to the deadLine attribute of the Document object.

Listing 10. Implementation of DeadlineControl as an interceptor using EJB3 specifi-
cation

class DeadlineControllnterceptor {

@AroundInvoke
public Object getState(InvocationContext ic)
throws Exception {

Date currentDate = new Date();

/+ Using InvocationContext to get the object
and reflection to get the wvalue of its
"deadLine” attribute x/

Field fld = ic.getMethod ().

getDeclaringClass ().
getDeclaredField (" deadLine”);

fld . set Accessible (true);

Date dt = new Date ();

Date expDate = (Date) fld.get(dt);

if (currentDate.compareTo(expDate) > 0) {
return null; //Method submitDoc () is not called

} else {
return ic.proceed ();
}

}

Using InwvacationContext, the decision module DeadlineControllnterceptor ob-
tains the name of the attribute “deadLine” to read its value from the life cycle
module. The value of the “deadLine” is assigned to the expDate (expiration
Date) and compared with the current date.

The implementation above is generic enough as it allows using the same
decision module among multiple life cycle modules. The only restriction remains
that the name of the constrained attribute “deadLine” has to be the same among
all of them. The unidirectional dependency is achieved using the interceptor
mechanism supported by the application server. The event-based communication
and composition is also used (although not shown in the listings above).

7.4 Using Enterprise Java Beans Framework and Decorator Design
Pattern

One may argue that using reflection is not safe and should be avoided whenever
it’s possible. In some cases, life cycle modules to be extended by decision modules
may have the same external behaviour, e.g. Document and Part in our running
case study. In such a case, decision modules may be implemented as wrappers to
life cycle modules using the Decorator design pattern. In the EJB3 specification
this pattern is supported as well. Decorators implement a mechanism that is
close to interceptors. They add functionality to the decorated classes. However,
instead of implementing cross-cutting concerns useful for different class types,
they extend the behaviour of a class implementing a certain interface.

In the following Listing 11 the deadline control functionality is implemented
as a decorator class DocumentDeadlineControlDecorator.

Listing 11. Implementation of DeadlineControl using Delegation within EJB3 speci-
fication

@Decorator
public abstract class
DocumentDeadlineControlDecorator
implements DocumentRemote {

@Inject
@Delegate
DocumentRemote doc;

@Override
public void submitDoc() {

Date currentDate = new Date ();
if (currentDate.
compareTo(doc. getDeadLine ()) >0){
System . err.println (” Expired”);
} else {
doc . submitDoc ();

The code shows the Document or Part class injected via their common inter-
face DocumentRemote. The @Inject annotation uses the dependency injection
mechanism [6] to give the decorator access to the decorated class. The @Delegate
annotation gives the container access to all exposed methods of all the classes
implementing the DocumentRemote interface. In our example, the call of the
submitDoc() method of Document happens only if the deadline is not expired.
As one can see, the techniques based on the dependency injection mechanism
provide the implementation means to produce the decision modules with all the
desired properties: modularity, unidirectional dependency with other modules,
event-based communication and composition of modules.

The disadvantage of the decision modules’ implementation approach using
EJB3 is obvious: it’s too heavy. The overhead of running the application server
just for the sake of support of decision modules is not sufficiently justified. How-
ever, if the system is already implemented as an enterprise application, this may
be a viable solution. EJB3 is supported by a large variety of certified application
servers [25], both open source and proprietary. In order to completely avoid a
vendor lock the EJB3 platform may be substituted by a platform independent
solution, for example, the Spring framework [27]. It has an additional benefit, as
it supports the AspectJ [5] specification, which implements the aspect paradigm
much more thoroughly than EJB3 does. We didn’t experiment with Spring, but
a code snippet like the one below can be already envisioned (Listing 12).

Listing 12. Implementation of DeadlineControl as an aspect using Spring framework
specification

@Aspect
public class DeadlineControlAspect {

@Around (” execution (¥ .documentmanager . submitDoc (..))”)
public void DeadlineControl(JoinPoint joinPoint){

/+ add decision module functionality here x/

Still, Spring is an additional layer on top of an application server. In the
following section we show how AspectJ as a special library for plain Java can be
used to implement decision modules.

7.5 Using AspectJ

The idea to implement business rules as aspects is not new. The authors of [17,
16, 13] point out that aspects allow the developers to separate the business logic
from the application’s core functionality encapsulating in aspects both crosscut-
ting features as well as their “connectors” [17] to business objects. This makes
it possible to “completely remove the source code pertaining to the business
rules” [13] from the business objects. In our terminology this is called unidirec-
tional dependency or obliviousness. In this subsection we show how the entire set
of Protocol Modelling properties may be implemented using aspect technology
for the plain Java.

We implemented our running example using an AspectJ plugin for Eclipse [5].
In the implementation, we continued to separate the generic Protocol Modelling
behaviour from the application (Document Manager) specific functionality.

Apart from the Behaviour class, already implemented earlier, we added to
the generic implementation (“behaviour engine”) two public interfaces Lifecy-
cleModule and DecisionModule.

The interface LifecycleModule contains the list of its decision modules and the
declarations of methods linking a life cycle module to its decision modules. This
is the implementation of the protocol model INCLUDES declaration (Listing 2).

The interface DecisionModule declares the decide() method, which, being
implemented, have to return true, if the decision module is in the right state al-
lowing proceeding the event specified for this decision module or false otherwise.

Further, we implemented the protocol model generic behaviour as an abstract
aspect BehaviourProtocol (Listing 13).

Listing 13. Implementation of the Protocol Modeling behaviour as an abstract aspect
using AspectJ

public abstract aspect BehaviourProtocol {
public abstract pointcut stateChanges(LifecycleModule lc);

void around(LifecycleModule lc): stateChanges(lc) {
for (int i = 0; i<lc.getDecisionModules ().size (); i++){

if (!((DecisionModule) lc.getDecisionModules ()
.elementAt(i)).decide(lc)){
System.out.println (7 .NO.GO!”);
return;

}

}

proceed (lc);

}

The most important part of our “engine” is the AspectJ advice stateChanges()
with ”around invoke” semantics. It iterates through all the life cycle module’s
(LC) decision modules (DM) using their decide() methods. If the state of each
decision module permits to proceed, the AspectJ’s proceed() method is invoked,
which allows the corresponding LC module’s method to run. As one can see
in Listing 13, if several DM’s are used for a single L.C, the AND semantics is
implemented with respect to the DM invocation: each of them has to be in the
right state that permits proceeding. If necessary, any other semantics of logi-
cal composition of aspects (e.q., OR, XOR) can be realized generically at the
implementation level.

Listing 14 shows the application specific part of the AspectJ implementa-
tion. There is an aspect implementing the BehaviourProtocol abstract aspect. It
declares the Document class as a LC and the DeadlineControl class as its DM
and also links them to the aspect. Next, the DeadlineControl’s decide() method
is implemented by the aspect. Finally, the pointcut is created, which links the
advice stateChanges to the Document’s method submitDocEventAJ().

Listing 14. Implementation of the application specific behaviour using AspectJ

public aspect BehaviourProtocolDocManImpl
extends BehaviourProtocol {
/+* Document as a life cycle module x/
declare parents: Document
implements LifecycleModule;
public Object Document.getData() { return this; }
/+ Its decision module */
declare parents: DeadlineControl
implements DecisionModule;
/x GO-No GO method for the decision module x/
public boolean DecadlineControl.decide(LifecycleModule lc)

{
System.out.println (” DeadlineControl _-Works!”);
/+ Here the DM gets the information about types of the LC
fields to check and their correct states for GO x/
if (getState ((Behaviour) lc.getData()) =
DocManState . NOT_EXPIRED) {
return true;
} else{
return false;
}

/+ stateChanges is invoked for each target being a life
cycle module with the signature of the method aspect
is weaved to x/
public pointcut stateChanges(LifecycleModule lc):
target (lc) && call (public void submitDocEventAJ())

Listing 15 shows the AspectJ implementation of the Document class. As
one can see, this is a “purely oblivious” implementation without any knowledge
about the decision module. The decision module can be implemented the same
way as shown in Listing 8. To obtain its current state, it still needs Java reflection
and the knowledge about the LC’s field type. However, as we pointed out before
(subsection 7.2), it is possible to implement any type-related functionality, which
uses reflection, as a member method of the generic class Behaviour.

Listing 15. Document class in the AspectJ implementation

public class Document extends Behaviuor

private String name;

private Date deadLine;

public Document(String name, Date deadLine) {
this.name = name;
this.deadLine = deadLine;
setState (State NEW);

}

public void submitDocEventAJ() {

this.setState (DocManState .SUBMITTED) ;

To support modularity, the AspectJ implementation clearly separates the
core and business rule logics between LC and DM implementation classes. The
former are completely oblivious to the latter. The even-driven mechanism can
be easily implemented using the publisher-subscriber pattern as we have shown
before in subsection 7.2. Moreover, the generic Protocol Modelling behaviour can
be further separated from the application specific one. This way, the usability of
the approach can be facilitated.

7.6 Using Mixins

Another promising approach would be to program with mixins [18]. When a class
implements a mixin, it implements an interface extended with this mixin and,
this way, implements mixin’s attributes and methods. This description is very

close to the functionality of BEHAVIOUR in protocol models. Unfortunately,
direct realisation of mixins in mainstream languages is largely absent, at least
without making use of special or not well known libraries. Despite some anecdotal
claims, the support of mixins in Java is hardly expected in foreseeable future
as well. The newly released Java 8 SE specification [11] does not support them
either.

A partial solution could be to use newly introduces in Java 8 SE [11] so called
“virtual extension methods”, which simply allow one to add default method im-
plementations to the interface not changing the implementation classes. Whether
or not such a feature could be sufficient enough for decision module implemen-
tations needs further experiments. In our future study we intend to investigate
as to how some known ad-hoc approaches [14] can be used to program decision
modules with mixins.

7.7 Properties of Decision Modules in Java Implementations

Technique Modularity|Unidirectional |Mechanism:

dependency Event-Driven
(CSP])

Object

Composition |yes no no

Publ.-Subscr.& partially,

Java Reflection |yes state reading:yes|yes
obliviousness:no

EJB 3 with

Interceptors yes yes yes

EJB 3 yes,

with Delegation|yes for a given yes
interface

Aspects with

AspectJ yes yes yes

Table 1. Protocol Modelling decision modules properties in different Java implemen-
tations

Table 1 summarises the implementation examples above with respect to their
adherence to the properties of decision modules in Protocol Modelling as they
described in subsection 6.3. The table shows that the aspect-oriented imple-
mentation techniques provide full support for the modularization with decision
modules.

8 Discussion

8.1 Decision Abstractions in Behaviour Modelling Practice

Decision modules are the abstractions of the business system modelling domain.

The practice shows that the most changeable parts of functionality of in-
formation and case management systems are the parts that present the rules
of handling the cases and information. The rules of handling insurance claims
change every year. The rules of proposal selection for funding and crediting are
constantly modified following the changes in the economic situation. The rules
of dealing with private health information in patient files, the rules of using
the information on the web, all undergo changes. Localization of such rules in
separate modules and the ability to modify those modules without changes in
other modules are the desired requirements supporting changeability of systems
during their evolution. Complex automated control systems may experience less
changes but they still need to overcome modernization. The localization of de-
cision points in such a way that their changes does not change the rest of the
system can simplify regression testing of system modifications.

The need of localising decisions seems being realised in the draft version of the
new Case Management Model and Notation (CMMN) [24] standard developed by
OMG. The standard includes a decision module called Sentry. “Sentry watches
out for important situations to occur (or events), which influence the further
proceedings of a Case A Sentry is a combination of an event and/or condition.
When the event occurs, a condition might be applied to evaluate whether the
event has effect or not” [24](p. 23)

Thus, on the one hand, the need of decision points as separate entities has
been recognised by the OMG community. On the other hand, the Protocol Mod-
elling semantics forms a solid basis for building executable models with decision
modules. There is also the ModelScope tool [21] that supports the execution of
protocol models. This is a good starting point. In this paper we have shown the
possibilities of implementation of decision models with the same properties as
in protocol models.

However, there are barriers to widespread adoption of the new protocol mod-
elling style.

— Unawareness. The first barrier is unawareness of the modelling community
about this style of modelling. The CMMN standard is young and still under
development. The description of the standard does not exactly follow the
protocol modelling semantics. The mutual adaptation of the Protocol Mod-
elling and the CMMN standard would contribute to the awareness about
decision modules.

— A small number of success stories. For the moment, success stories have been
collected at the official web page of the company called Metamaxim [21].
A systematic application was fulfilled for the use case of basic insurance
for Oracle Nederland [28]. In order to convince businesses to use the new
modelling style, more success stories have to be collected and distributed to
the modelling community and businesses.

— Legacy models. There are many legacy models in the key business areas like
banking and government services. These models are built using the tradi-
tional process modelling style. To adopt a new modelling style, companies
need a very good motivation for new investments in those models. Modelling
does not give direct return on investments. Better understanding and rea-
soning are not tangible enough. The advantages of the new modelling style
need further valorisation.

8.2 Decision Modules in Implementations. The Way to Go?

The bottleneck in system development is often the implementation of changes.
For example, the maintenance teams of insurance applications experience stress
every year as the new rules of claim handling are accepted by the governments,
say, in November-December. The changes often need to be implemented and
work perfectly from the first day of January. Most of the time, the modifications
concern decision rules. If the implementation follows the new modelling style
and supports local modifications which guarantee that the not-modified parts
preserve their behaviour, the time for implementation and testing activities will
be shortened. This evidence will be the best argument in favour of the new mod-
elling and implementation style. We see the best way to obtain such an evidence
in refactoring an existing application in some traditional case management do-
main. To do so, we need a proper tool support for different stages of the software
development process.

— Refactoring of conventional process models. The first group of tools should be
able to refactor or transform the conventional process models into protocol
models with separated decision models. These tools should help to overcome
the barrier of legacy systems and also increase the awareness in the new style
of modelling and the properties of models with separated decision modules.

— An open source execution tool for CMMN models with Protocol Modelling
semantics. The most convincing way of promoting the new approach is to
let the user to play with it. Even more importantly, executable Protocol
Modelling would allow the developers to get insights into the model at early
stages of the development and avoid more costly mistakes at the later stages.

— Implementation libraries and plugins. The Protocol Modelling implementa-
tion style has to be accompanied by open source libraries which should im-
plement its generic functionality. In our experiments with Java and AspectJ
we have found that this generic part can be factored out from the appli-
cation specific behaviour into a separate package. Further, using the plugin
mechanism, a “behaviuor engine” package and, thus, the decision module-
based approach can be made a part of the development environments such
as Eclipse or NetBeans.

In our future work we intend to follow the directions indicated in the above list.

9 Conclusion

In this paper we have defined decision modules and investigated the possibili-
ties of Java implementation of decision modules identified in requirements and
modularized in protocol models.

Decision modules separate a specification of the state of a non-empty set of
system objects in the form of a calculated state allowing or forbidding a set of sys-
tem actions. The calculated states serve as conditions for making decisions about
the possible system actions. Separation of such modules facilitates requirements
traceability, test generation and modification of models and implementations.

We have shown a possible way to separate decision models in declarative
models, executable protocol models and Java programs.

To answer our research question, we conclude that it is indeed possible to im-
plement functionality of decision modules using such mainstream object-oriented
language techniques as EJB3 and AspectJ so that such implementations would
have the same properties as the decision modules in executable protocol mod-
els. These techniques support all the decision modules’ properties and provide
the means to make generic implementations. The usability of such a solution
depends on the development of necessary libraries and plugins. In this paper we
have collected the experience for creating a “behaviour composition engine” for
the implementation of applications with life-cycle and decision modules.

References

1. B. Halle von. Business Rules Applied. Wiley, 2001.

2. G. Bracha and W. Cook. Mixin-based inheritance. OOPSLA/ECOOP 90 Proceed-
ings of the European conference on object-oriented programming on Object-oriented
programming systems, languages, and applications, pages 303-311, 1990.

3. Business Rules Group. Defining Business Rules. What Are They Really?
http://www.businessrulesgroup. org/firstpaper/BRG-whatisBR_3ed.pdf, 2000.

4. C.J. Date. What not How: The Business Rules Approach to Application Develop-
ment. Addison-Wesley, 2000.

5. Eclipse. AspectJ project. http://projects.eclipse.org/projects/tools.aspect;.

6. EJB 3.2 Expert Group. JSR-318 Enterprise JavaBeans, Version 3.2, 2013.

7. R. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented Software Develop-
ment. Addison-Wesley, 2004.

8. C. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

9. IDC. IDC survey, http://ceiton.com/CMS/EN /workflow/
introduction.html#Customization, 2007.

10. J. Taylor and N. Raden. Smart (Enough) Systems . Prentice Hall, 2007.

11. JSR-000337 Java SE 8 Release , 2014.

12. K. Jensen. Coloured Petri Nets. Springer, 1997.

13. A. Kellens, K. D. Schutter, T. D’Hondt, V. Jonckers, and H. Doggen. Experiences
in modularizing business rules into aspects. In ICSM’08, pages 448-451, 2008.

14. Kerflyn’s Blog. Java 8: Now You Have Mixins? http://kerflyn.wordpress.com/-
2012/07/09/java-8-now-you-have-mixins/.

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. Proceedings of the European Conference
on Object-Oriented Programming, 1241:220-242, 1997.

M. A. Cibréan, M. D’Hondt. Composable and reusable business rules using AspectJ.
In In Workshop on Software engineering Properties of Languages for Aspect Tech-
nologies (SPLAT) at the International Conference on AOSD. Boston, USA , 2003.
M. A. Cibrdn, M. D’Hondt and V. Jonckers. Aspect-Oriented Programming for
Connecting Business Rules. In 6th Proceedings of International Conf. on Business
Inforamtioon Systems,Colorado Springs, USA , 2003.

M. Flatt, S.Krishnamurthi, M. Felleisen. A Programmers Reduction Semantics for
Classes and Mixins. In In Formal Syntax and Semantics of Java. Lecture Notes
in Computer Science. Volume 1523, pages 241-269. Springer, 1999.

A. McNeile and E. Roubtsova. CSP parallel composition of aspect models.
AOM’08, pages 13—18, 2008.

A. McNeile and E. Roubtsova. Aspect-Oriented Development Using Protocol Mod-
eling. LNCS 6210, pages 115-150, 2010.

A. McNeile and N. Simons. http://www.metamaxim.com/.

A. McNeile and N. Simons. Protocol Modelling. A Modelling Approach that Sup-
ports Reusable Behavioural Abstractions. Software and System Modeling, 5(1):91—
107, 2006.

OMG. Unified Modeling Language: Superstructure version 2.1.1 formal/2007-02-
03. 2003.

OMG. Case Management Model and Notation. Version 1.0, formal/2014-05-05.
2014.

Oracle. JavaEE Compatibility. http://www.oracle.com/technetwork/java,/-
javaee/overview /compatibility-jsp-136984.html/.

E. Roubtsova and S. Roubtsov. A Test Generator for Model-Based Testing. Pro-
ceedings of the Fourth International Symposium on Business Modeling and Software
Design, BMSD 2014, 24-26 June, 2014, Luxembourg., 2014.

Spring. Spring Framework. http://projects.spring.io/spring-framework/.

J. Verheul and E. Roubtsova. An Executable and Changeable Reference Model for
the Health Insurance Industry. The 3rd International Workshop on Behavioural
Modelling - Foundations and Application. BM-FA 2011, Birmingham, UK. ACM
DL, pages 33-40, 2011.

