
65

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

DOI: 10.4018/978-1-4666-4217-1.ch003

EXTREME:
EXecuTable Requirements Engineering,

Management, and Evolution

ABSTRACT

Requirements engineering is a process of constantly changing worlds of intentions, goals, and system
models. Conventional semantics for goal specifications is synchronous. Semantics of conventional system
modeling techniques is asynchronous. This semantic mismatch complicates requirements engineering.
In this chapter, we propose a new method EXTREME that exploits similarities in semantics of goal
specification and executable protocol models. In contrast with other executable modelling techniques,
the semantics of protocol modelling is based on a data extended form of synchronous CSP-parallel
composition. This synchronous composition provides advantages for relating goals and system models,
reasoning on models, requirements management, and evolution.

INTRODUCTION

It is ‘’reasonably well known that requirements
will never be totally complete, finished, and final-
ized as long as a system is in service and must
evolve to meet the changing needs of its customers
and users” (Firesmith, 2005). However, there is
a temporary notion of adequate completeness at
some moment in time when the stakeholders are
agreed on requirements. Adequate completeness
of requirements is needed to estimate the devel-
opment costs and to avoid incorrect assumptions
for implementation decisions.

One of the powerful instruments to get ad-
equately complete requirements is executable
system modeling. Psychology studies show that
people’s thinking is context related (Tversky &
Simonson, 1999). For requirements engineering
this means that stakeholders can identify missing
or tacit requirements at the moment they see the
behaviour of the system model. Hence, the execut-
able models offer to stakeholders the contextual
basis for identification of incompleteness. The
semantics of executable modelling should be
consistent with the semantics of goals.

In practice there is a semantic mismatch. The
semantics of goals is synchronous. The conven-
tional executable system modeling techniques are
asynchronous. Asynchronous execution of the

Ella Roubtsova
Open University of The Netherlands, The Netherlands

66

EXTREME

models gives birth to states that are not expressed
by the goals. In such states, stakeholders do not
understand the execution of the models and cannot
properly evaluate the models and reason on them.

In this chapter we propose a new method EX-
TREME that exploits similarities in semantics of
goal specification and executable protocol models
in order to simplify executable requirements en-
gineering, management and evolution. Protocol
models use a data extended form of synchronous
CSP-parallel composition. The combination of
protocol models and goal-oriented approaches
semantically coherent, all states can be goal in-
terpreted and this eases reasoning on models in
terms of goals, goal refinement and identification
of missing requirements.

Before showing the EXTREME method, we
first remind elements of goal modelling. Then we
remind elements of protocol modeling and show
how to create protocol models corresponding to
goals. The process is illustrated with a case from
the insurance domain. We discuss the semantic
elements of Protocol modelling that make it suit-
able for combination with goal-oriented modeling.

GOAL MODELLING

Goal-Oriented Requirements Engineering
(GORE) is a well-established group of approaches
(Kavakli, 2002; van Lamsweerde, 2004; Darimont
& Lemoine, 2006; Regev & Wegmann, 2012).
The aim of a goal-oriented approach is to justify
requirements by linking them to higher-level goals.

The notion of a goal is used as a partial de-
scription of a system state being a result of an
execution of the system. The authors of the GORE
methods emphasize the similarity between goals,
requirements, and concerns and propose to com-
bine them in one tree structure. Goals are refined
by requirements and concerns. The goal models
are used to keep the business motivation in mind
of requirement engineers and to elaborate the
strategic goals with requirements and concerns.

An example of a goal tree is shown in Figure
1. The top nodes of Figure 1 present business
goals of a simplified system supporting insurance
business. The goals are:

• A product is composed.
• A policy is bought by a registered customer.
• A claim of a client with a bought policy is

handled.

Each parent goal (the one pointed to by the
arrow) is refined with a list of sub-goals and
requirements. The leaves of the tree present sys-
tem requirements. Business and strategic goals
are expressed using concepts of the stakehold-
ers’ vocabulary. Lower-level goals are typically
expressed using words from the stakeholders’
vocabulary as well as specific technical terms
introduced in the model on purpose and where
necessary (Respect-IT, 2007).

Identifying goals is not proceeding exclusively
from either a top-down or a bottom-up approach.
In most cases the two approaches are used at the
same time. Refining goals in a goal model often fol-
lows a so-called “milestone approach” (although
there are many other decomposition approaches).
Milestone goals represent goals as intermediate
states in a process aimed to achieve the top goals.
For example, the goal “A product is composed”
(Figure 1) is refined by goals “There is a list of
medical procedures”, “Medical procedures are
combined into groups”, “Each group corresponds
to a NoLimit(Coverage) or MaxCoverage”.

GORE trees are also used to relate goals and
structural elements of the: Entities, Agents, and
Operations. Entities represent passive objects in
contrast with Agents that represent active objects.
Agents are either human beings or automated
components that are responsible for achieving
requirements. The goals of this level assigned
to the humans are called expectations. Software
agents are responsible for requirements. Agents,
Entities and their Relations are captured in an

67

EXTREME

object model. Often goals are assigned to several
agents rather than a single one.

In order to achieve goals software agents per-
form operations. The operation model in GORE
sums up all the behaviors that agents need to
have to fulfill their requirements. Behaviors are
expressed in terms of operations performed by
agents. Those operations work on objects (entities
and agents) described in the object model: they
can create objects, provoke object state transitions
or trigger other operations through the send and
receive events.

GORE operation diagrams are either data flow
or control flow diagrams. Data flow and control
flow diagrams have asynchronous semantics. This
is the place where the operation model introduces

states that cannot be related to goals. Even if the
operational model is executable, not all of its
states can be related to goals. A simple example is
asynchronous arriving of two data items to reach
a state expressed with a goal. In the asynchronous
model the items arrive one after another and
produce intermediate state when one item has ar-
rived and the other has not arrived yet. This state
cannot be interpreted from the goal perspective
and may be seen by stakeholders as an evidence
of wrong model behaviour. Letier et al. (2008)
note that in order to be semantically equivalent
to the synchronous goal models, the operation
models need to refer explicitly to timing events.
It seems that the object and operation models
present the abstraction level that is lower than the

Figure 1. Goal tree of an insurance business

68

EXTREME

level needed for the requirement analysis by the
stakeholders. GORE methods need synchronous
compositional executable behavioural models
corresponding to goals.

PROTOCOL MODELLING

Protocol models have elements of synchroniza-
tion needed to present the system behavior at
the higher level of abstraction than the operation
diagrams. We propose to relate goals to protocol
machines instead of class and operation diagrams.
Synchronously composed protocol machines form
together the protocol model corresponding to
goals. In Figure 2 a dashed arrow is drawn from
a box presenting a protocol machine to the box
presenting the corresponding requirement. In this
section, we discuss the elements of protocol models
and the advantages of using them in goal–oriented
approaches.

Protocol Modelling approach was developed
by McNeile and Simons (2006). This approach
can be viewed as a combination of object life-
cycle modelling and the data-extended synchro-
nous CSP-parallel composition. The initial ideas
of this composition technique were borrowed from
the process algebra of Communicating Sequential
Processes (Hoare, 1985) and then extended in
order to enable composition of models with data.
In this part we present main elements of Protocol
Modelling. We also show that this approach pro-
duces the system models, all states of which can
be related to goals.

A protocol machine is a state-transition
structure with data storage that defines ability
of a system to interact with the environment by
accepting events from environment or refusing
events. A protocol machine can be seen like an
object that exists even without its creation in its
initial state. An object goes into its active state
with a creating event.

For example, the protocol machine Medical
Procedure defines the attributes and stored states

of the life cycle and transitions of every object of
type Medical Procedure. Transitions define the
interactions with the environment recognized by
the object.

 OBJECT Medical Procedure

 NAME Name

 ATTRIBUTES Name: String, MPGroup:MPGroup

 STATES created, added

 TRANSITIONS

 new*Create Medical Procedure=created

 created*AddMPintoGroup=added.

 added*Submit Claim=added.

The named interactions are specified as event
types. Event types are presented as data structures.
The attributes of event types are used as data con-
tainers for the data exchange with the environment.

For example, the definition of event Create
Medical Procedure shown below tells that this
event is used by the protocol machine Medical
Procedure and it takes a string from environment
to name this medical procedure.

EVENT Create Medical Procedure

ATTRIBUTES

 Medical Procedure: Medical Procedure,

Name: String

Being in a state specified by a transition, the
protocol machine accepts the event of this tran-
sition. If the protocol machine is not in the state
where a given event causes a transition, this event
is refused even if the event is recognized by the
protocol machine. If an event has been accepted, it
is processed until the quiescent state of the protocol
machine. During this processing the other events
are refused. This behavior of protocol machines
is different from behavior of state machines. The
UML state machines accumulate all recognized
events in a queue so that they may cause a transition
in the future (UML2.OMG, 2007). Accumulating
events in the queues causes extra states of the

69

EXTREME

model and non-determinism in behavior of state
machines. Protocol machines are deterministic.

A protocol model is a synchronous CSP parallel
composition of all protocol machines in the model
(McNeile & Simons, 2006). The composition is
used to compose different views on the system
expressed as protocol machines. Protocol ma-

chines work synchronously resulting in observable
behavior. That is why an event is only accepted
by the model if all protocol machines recognizing
this event accept it. Otherwise the event is refused.
This is the core of the CSP parallel composition.

Figure 2. Goals and corresponding protocol machines

70

EXTREME

For example, event AddMPintoGroup synchro-
nizes two protocol machines Medical Procedure
and MPGroup:

EVENT AddMPintoGroup

ATTRIBUTES

 Medical Procedure: Medical Procedure,

MPGroup:MPGroup

We say that there is a CSP parallel composi-
tion: Medical Procedure || MPGroup.

Event Submit Claim synchronizes protocol
machines Claim, Polis and Medical Procedure
and takes from the environment the Claim Number
and its Amount.

EVENT Submit Claim

ATTRIBUTES

 Claim:Claim, Polis:Polis, Medical

Procdure: Medical Procedure,

 Claim Number:String, Amount:

Currency

The result of synchronization is the CSP
parallel composition: Claim || Polis || Medical
Procedure.

The complete protocol model in our insurance
case is the CSP parallel composition the instances
of 12 protocol machines. The number of instances
is not restricted and depends on the interactive
process of model execution. The meta-code of
the model is given in the appendix.

The data extension of the initial CSP parallel
composition semantics concerns with the ability of
protocol machines to read but not alter the state of
other protocol machines, so that the state causing
accepting or refusing events can be formulated
using states and local storages of all protocol
machines in the model and the data from events.

Another consequence of the data extension
of the CSP composition is the ability of protocol
machines to derive own states from the states
of other protocol machines. Derived states are
calculated from the values of the stores states

specified for protocol machines. A derived state
extends the state space of the system model and
used to generalize the state of different protocol
machines for a specific system view. For example,
if all medical procedures have been included into
a group, the state “the group has been completed”
can be derived. Having derived states we can
separate stored state space and derived state space
for reasoning and analyses.

The updating of the stored space of a protocol
model is restricted by accepting one event at a
time and handing it until the new quiescent state
of the model. Only quiescent states visible from
the environment are included into protocol models.
As only quiescent states are specified in the goals,
the semantics of protocol model corresponds to
the semantics of goal specification.

A protocol machine called Behaviour may
be included into another protocol machine. This
means that an instance of the Behaviour is auto-
matically created with the instance of the including
protocol machine.

Behaviours are equally CSP parallel composed
with other protocol machines.

Deriving state and updating state of several
protocol machines demand some search of in-
stances of protocol machines and their attributes.
These search commands are specified in small
java files using a set of search functions built
into the Modelsope tool. There are three types
of search functions:

1. Function selectByRef(“Behaviour_
Name”,“Attribute_Name”) returns an ar-
ray of instances, all of which include the
specified behaviour (or object) and have the
specified attribute referencing this.

2. Function selectInContext (“Behaviour_
Name”,“Event_Name”) returns an array of
instances, all of which include the specified
behaviour and have the specified event with
the specified subscript in context.

71

EXTREME

3. Function selectInState (“Behaviour_
Name”,“State”) returns an array if instances,
all of which include the specified behaviour.

The data extension of the CSP parallel com-
position for protocol machines makes protocol
models flexible in presentation of any modeling
abstraction, such as objects and crosscutting con-
cerns (see details in McNeile & Roubtsova, 2008,
2010) and adopting any model change as a sepa-
rate protocol machines. The experimental studies
demonstrate scalability and change adoptability
on the applications of industrial size (Verheul &
Roubtsova, 2011).

Events are identified in the goal-oriented ap-
proaches, but they are not used for object com-
munication and do not contain data. Events in the
goal-oriented approaches trigger operations. Pro-
tocol models work at the higher level than the level
of operations. Protocol machines communicate
with environment accepting or refusing events and
by generating events to the environment. Dealing
with events with data in protocol machines allows
abstracting from the send-receive-operations and
avoiding the non-determinism caused by them. The
use of operations is an implementation decision

which the protocol models avoid as ‘’requirements
have to describe what the system does, not how
its does it (Zave & Jackson, 1997).

Protocol models are directly executable in the
Modelscope tool (McNeile & Simons, 2011). The
tool provides a generic interface for execution of
any protocol model allowing submitting events
and observation of results, protocol machine,
and their attributes. The interface generated by
the Modelscope tool for this model is shown in
Figure 3.

Local Reasoning on Protocol
Machines

Protocol Models are unique in the sense that they
possess the property of local reasoning on each
protocol machine about the behavior of the whole
system. The local reasoning on protocol machines
was proven in McNeile and Roubtsova (2008),
and it was discussed in detail in McNeile and
Roubtsova (2010) and Roubtsova (2011).

Local reasoning in Protocol Modelling is based
on a property of CSP composition.

Figure 3. Execution of the protocol model

72

EXTREME

• Let us take a sequence, S, of events that is
accepted by the CSP parallel composition
of protocol machines (M1 || M2) of the two
machines M1 and M2.

• Then let us take the subsequence, S0, of S
obtained by removing all events in S that
are not recognized by the protocol machine
M1.

• S0 will be accepted by the machine M1 by
itself.

In other words, composing M1 with another
machine with cannot “break its trace behavior
of M1. We can use this property to support local
reasoning on each protocol machine about the
behaviour of the whole model. If by removing
all events in S that are not recognized by M1, we
have got a sequence S0 that were not acceptable
to M1 or M2, then the original sequence S could
not have been acceptable to (M1 || M2).

Each protocol machine has usually 1-5 states
(Figure 4). The set of its sequences is observable.
The loops can produce infinite traces, but testing
of the finite set of traces for each simple protocol
machine is sufficient to test one protocol machine.
This means that verification of any requirement
may be reduced to testing of a finite set of traces
of relevant protocol machines. The testing of goals
means that for each goal there is a reachable state
and there are no states that do not correspond to
one or another intermediate or final goal leading
to the final state.

PROTOCOL MODEL
CORRESPONDING TO THE GOAL
MODEL

The state-transition part of protocol models can
be presented graphically. Graphical presentation
of CSP composition is possible but not necessary.
The CSP parallel composition is comparable with
an interpreter that executes the model interacting
with its environment.

The graphical presentation of our case is shown
in Figure 4. States of any protocol machine are
ellipses, events are labels on arcs and transitions
are triples of two ellipses and a labeled arc between
them. The graphical presentation does not allow
adequate specification of data.

We discuss this correspondence of goals and
protocol machines goal by goal.

Goal “A Product is Composed”

Defining the goal “A product is composed” via
sub-goals and requirements we identify concepts
Medical procedure, MPGroup, NoLimit Coverage,
Max Coverage and Product. Each of the concepts
is specified as a protocol machine.

In order to create an instance of a Product
the concept Medical procedure is populated with
instances. Chosen instances of Medical Procedure
are combined in one MPGroup and this group is
assigned to a NoLimit Coverage instance. Another
group is assigned to Max Coverage.

Several instances of Max Coverage can be
defined with different attribute Max Balance. A
completely composed product is offered to the
market. Acceptance of the event Offer Product
transits the instance of a Product to state offered.
If a product is in the state offered (Figure 4), it
is available for clients willing to buy a policy. At
this moment the actor Client may submit events
to the model.

Almost all events recognized by described
protocol machines are submitted to the system
by the actor called Product Manager and this is
described in the meta-code in the Appendix. The
specification of an actor selects protocol machines
visible to a particular interacting actor from the
actor specification and metacode of corresponding
protocol machines the Modelscope tool generates
the Product Manager interface to test the model.

73

EXTREME

Unfolding Hidden Requirements

Very often during the execution of the life cycle
events, a stakeholder may recognize a tacit re-
quirement.

For example, a stakeholder executes the model
and creates two medical procedures with the same
name. The stakeholder decides that this is not
what he wants and any Medical procedure; any
MPGroup and any Product should be unique in the
system. To achieve this crosscutting requirement
a protocol machine that controls the duplication

can be added and CSP composed with the model.
The meta-code of the protocol machine Duplicate
Check is presented below and in Figure 4. This
protocol machine allows proceeding of event
Create only if the created instance does not exist.

BEHAVIOUR !Duplicate Check

 STATES unique, duplicate

 TRANSITIONS @any*Create =unique

Graphical presentation of protocol machines
with derived states demands particular attention.

Figure 4. Protocol model

74

EXTREME

We depict derived states as double line ellipses.
The function of state derivation is specified in a
java file and it is not presented in the Figure 4.

Derived states should not form pairs to a
specify transition. A derived state constraints
the acceptance of an event. If a derived state
presents a pre-state of an event then an outgoing
arc is labeled with this event. If a derived state
presents a post-state of an event then an ingoing
arc is labeled with this event.

If the event recognized by the machine with
derived states is accepted by the model then the
resultant state is defined by protocol machines
with stored states accepting this event.

The behaviour Duplicate Check is a cross-
cutting concern, as it is included into protocol
machines Medical Procedure, MP Group and
Product. This means that an instance of Duplicate
Check is created with any instance of Medical
Procedure, MP Group and Product and CSP
composed with the model.

The exclamation symbol in the metacode BE-
HAVIOUR !Duplicate Check means that there is a
java code corresponding to the protocol machine.
The java code is shown below. It finds all instances
of the hosting protocol machine and checks if
there is an instance with the same name and the
same identification. The Duplicate Check protocol
machine with the corresponding code is used for
modelling the uniqueness constraint. The user does
not see the java code but she executes the model
and is able to create and use only unique instances.

package Insurance;

import com.metamaxim.modelscope.callbacks.*;

public class DuplicateCheck extends

Behaviour {

public String getState() {

 String myName=getString(“Name”);

 Instance[] existingIns = this

selectInState(this.getObjec

Type(), “@any”);

 for (int i = 0; i < existingIns.

length; i++)

 if(existingIns[i].getString(“Name”).

equals(myName)&& !existingIns[i].

equals(this))

 return “duplicate”;

 return “unique”;

 }

 }

Goal “A Policy is Bought by
a Registered Customer”

For this goal concepts Person and Policy have
been recognized and the corresponding protocol
machines have been specified. A person and a
policy should be unique, so the Duplicate Check
is included into the protocol machines Person
and Policy.

Goal “A Claim of a Client with
a Bought Policy is Handled”

Unfolding Hidden Requirements

1. Concept Claim is identified from this goal.
A claim can be paid without limit or paid
to maximum. This specification hides the
need of classification of claims.

2. Buying a policy means some obligations for
the insurance business to create containers
for coverages for handling the policy limits.
When the payment takes place the corre-
sponding “container” is updated. Creating
containers are expressed in requirements.
The rules of these updates are not presented
in the requirements.

3. We improve the situation with tacit require-
ments about the claim classification by
adding a protocol machine Claim Sorting
included into protocol machine Claim.
The behaviour Claim Sorting checks if the
medical procedure of the submitted claim
belongs to the group assigned to the NoLimit
Coverage or one of the Max Coverages in the
policy of the client. If the medical procedure
is not assigned to a group, it is not covered. If

75

EXTREME

it is assigned, then correspondingly state Max
or NoLimit is derived for protocol machines
Claim Sorting (Figure 4). In state Max event
PayToMax is allowed. In state NoLimit event
Pay NoLimit is allowed.

4. We improve the situation with the specifi-
cation of claim handling. We have identi-
fied that we need concepts of “containers”
that will be updated with claim handling.
To support modeling of claim handling
from the point of view of the insurance
business we create protocol machines
CoverageNoLimit and CoverageMax. We
put java file BuyPolicy into correspondence
to event Buy Policy, so that this event
generates events createCoverageMax and
createCoverageNoLimit and submits them
to the environment. Protocol machines
CoverageMax and CoverageNoLimit accept
these events and create the instances. All
coverages of the product are found in the
Product protocol machine and collected in
an array Instance[] myMaxCoverages. For
each coverage a creating event is generated
(for example Event createCoverageMax
and all attributes are filled in with the
data. The presented code does not specify
any implementation; it translates the event
BuyPolicy to the concepts of protocol ma-
chines CoverageMax and CoverageNoLimit.
The Modelscope tool finds the java file with
the same name Buy Policy and executes it,
so that the stakeholder executes the model
and tests her requirements.

package Insurance;

import com.metamaxim.modelscope.callbacks.*;

public class BuyPolicy extends Event {

 public void handleEvent() {

 this.submitToModel();

 //Add the associated CoveragesProce-

dures to the Policy

 Instance myProduct= this=

getInstance(“Product”);

 String myProductName=myProduct.

getString(“Product Name”);

 Instance[] myMaxCoverages =

 this.getInstance(“Product”)

selectByRef(“MaxCoverage”, “Product”);

 for (int i = 0; i < myMaxCoverages.

length; i++) {

 String myName=myMaxCoverages[i].

getString(“MaxCoverage Name”);

 int myMax=myMaxCoverages[i].

getCurrency(“MaxBalance”);

 Event createCoverageMax = this

createEvent(“Create CoverageMax”);

 createCoverageMax.

setNewInstance(“CoverageMax”, “Coverage-

Max”);

 createCoverage-

Max.setInstance(“MaxCoverage”,

myMaxCoverages[i]);

 createCoverageMax.

setString(“CoverageMax Name”, myName);

createCoverageMax.setCurrency(“Balance”,

myMax);

 createCoverageMax.submitTo-

Model();

}

 Instance[] myNoLimitCoverages =

 this.getInstance(“Product”).

selectByRef(“NoLimitCoverage”, “Product”);

 for (int i = 0; i < myNoLimitCover-

ages.length; i++) {

 String

myNoLimit=myNoLimitCoverages[i].

getString(“NoLimitCoverage Name”);

 Event createCoverageNoLimit = this.

createEvent(“Create CoverageNoLimit”);

 createCoverageNoLimit.setNewInstance(“

CoverageNoLimit”, “CoverageNoLimit”);

 createCoverageNoLimit.

setInstance(“NoLimitCoverage”,

myNoLimitCoverages[i]);

 createCoverageNoLimit.

setString(“CoverageNoLimit Name”, myNoLim-

76

EXTREME

it);

 createCoverageNoLimit.submitToMod-

el();

 }

 }

 }

5. Handling of claims means updating contain-
ers. The given requirements of these updates
are not precise enough for executable model-
ling. For example, the goal “A Max-claim is
paid to Max” is ambiguous. The executable
model demands refinement of this goal
formulation to a simple algorithm on how
to calculate the payment and the rest of the
coverage. This algorithm is presented in
the state-function of the protocol machines
CoverageMax:

package Insurance;

import com.metamaxim.modelscope.callbacks.*;

public class CoverageMax extends Behaviour {

public void

processPayToMax(Event event, String sub-

script) {

int newBalance=this.getCurrency(“Balance”);

int newAmount=

event.getInstance(“Claim”).

getCurrency(“Amount”);

int newPayment=0;

 if (newBalance >= newAmount) {

 newBalance=newBalance-newAmount;

 newPayment=newAmount;

 } else {

 newPayment=newBalance;

 newBalance=0;

 }

 this.setCurrency(“Balance”, newBalance);

 this.setCurrency(“PaymentToMax”, newPay-

ment);

}

}

We can see that as a result of executable mod-
eling we have refined initial requirements to the
point that they may be executed. Even our simple
case shows that the initial goal specification is
refined because the executable protocol model
demands more precision to be executed.

DISCUSSION

EXTREME is a New Method for EXecuTable
Requirements Engineering, Management, and
Evolution

If the ideas of a collection of methods used
together produces more knowledge then each
of combined methods, this collection presents a
new method.

Our collection of methods combines the ideas
of goal-oriented methods and protocol modeling.

Goal-oriented modeling methods along suggest
strategic structuring of wishes of stakeholders as
goals and refinement of the goals to requirements
up to structural elements of system implementa-
tion: classes, their attributes and operations. In the
absence of system implementation, verification of
the produced specification demands methods of
model checking. The properties are specified in a
formal logic. Goal–oriented methods do not give
instructions for transformation of requirements
into formal properties. The properties are speci-
fied by an analyst, which is an error prone process.
Then the state space specified by classes and
attributes is built and the sequences of operation
calls are generated to verify the truth of specified
properties or the false of negations of properties.

The results of model checking need to be
interpreted to stakeholders who specified goals.
The interpretation may be misunderstood and
the feedback of stakeholders may be lost at this
stage. In this case the knowledge about correspon-
dence between the specifications to the wishes of

77

EXTREME

stakeholders will be fully identified only at the
implementation stage.

Protocol modeling along allows producing
executable models of requirements with any pos-
sible decomposition; however, this method does
not answer the question how the protocol models
should be built from system requirements. Tracing
requirements and management of requirements is
not addressed in protocol modeling.

Business practice needs methods that consider
requirements engineering, evolution and manage-
ment as parts of one process. Using model-check-
ing techniques in this process (with specification
of system properties and interpretation of results
to requirements engineers) is not effective. This is
like an extra step of translating to model checking
after every change in requirements and translating
the results of model checking back to require-
ments. Requirements engineers should be able to
fulfill the self-validation of their requirements. By
executing requirements on the protocol model in
EXTREME, they are able to do this.

EXTREME replaces refinement of goals to the
specification of classes, attributes, and operations
with refinement of goals to protocol models. Be-
ing compositional in nature, the protocol models
contain protocol machines directly corresponding
to requirements. Protocol models possess the
property of local reasoning described in section
3. Local reasoning means that properties of each
protocol machine are preserved in the behaviour
of the whole protocol model. That is why building
and analyzing of large state space of the system by
model checking may be replaced with execution
of a limited number of protocol machines collab-
oratively responsible for the tested requirement.

The tested requirements should not be trans-
formed into formal property. Each requirement
usually describes the sequential steps of a protocol
machine or update of local storage of a protocol
machine. This means that a requirement is directly
visible in one of protocol machines. The execu-
tion of the protocol model in de Modelscope tool
shows the protocol machines responsible for the

requirement. The requirements implemented as a
protocol machine is preserved in the CSP parallel
composition of protocol machines. The presence
or absence of a requirement is an additional in-
dication of the correctness of model evolution.

The user and requirements engineer provide
their feedback as many times as needed by look-
ing at model execution. In such a way EXTREME
produces the knowledge about the correspondence
of requirement specification to the wishes of
stakeholders before the implementation of the
system and more knowledge is produced than in
original goal-oriented methods.

The improvement of the requirement engineer-
ing process means

• Producing adequately complete
requirements.

• Enabling easy management of require-
ments including easy changing.

• Enabling local reasoning on parts of the
model about the behavior of the whole.

Producing Adequately
Complete Requirements

Protocol Modelling of requirements results in a
refined goal tree shown in Figure 2. Contextual
playing with executable requirements caused
recognizing tacit requirements.

• We have extended initial requirements with
uniqueness of instances. For example, any
Medical Procedure, Medical Procedure
Group, Product and Person should be
unique. This concern is specified as a sepa-
rate protocol machine Duplicate Check.
This protocol machine accompanied with
the corresponding call-back function is
included into each of the named protocol
machines and CSP composed with them.
Duplicate check is a good example of a

crosscutting concern. Protocol models
provide the necessary flexibility for

78

EXTREME

presentation of crosscutting concerns
and other refinements of requirements
(McNeile,A., Roubtsova E. (2010)).

• We have completed the requirements need-
ed for claim handling by adding containers
of coverages for each policy and by speci-
fication of updating procedure of those
containers.

As we can see the ambiguities of the first defi-
nitions of claim handling and product definition
are resolved by adding new protocol machines and
CSP composing them with the protocol machines
representing life cycle of identified objects. In
fact each protocol machine is a presentation of a
requirement that can be tested. If a requirement
cannot be presented as a protocol machine it has
to be refined. An executable protocol model if re-
quirements indicate their adequate completeness.

Enabling Easy Management
of Requirements Including
Easy Changing

Goals have a clear tree structure and combining
of them with protocol models puts protocol ma-
chines as leaves of the goal tree. The tree structure
is good for search of goals and corresponding
protocol machines. It is easy to delete an exist-
ing goal (protocol machine) and add a new goal
(protocol machine).

The only problem with the trees is the ac-
commodation of crosscutting concerns. In a tree
structure, the crosscutting requirement and the
corresponding protocol machine will inevitable
appear several times.

In order to solve this inconvenience, the name
of the protocol machine in the tree may contain
a link to the place of the metadata specifying
this protocol machine in the textual document.
Modification of a requirement (goal) will result
in search of the corresponding protocol machine
in order to correct it.

In other methods combining of goal and
operation models (Respect-IT (2007), Van, H.T.
et.al. (2004)), refinement of requirements usually
results in remodeling. The crosscutting concerns
cause a lot of error prone remodeling activities.
This is explained by the composition techniques
used in operation models, namely, the sequential
composition and the hieratical composition. If a
concern is added, the sequences have to destroyed
and built again. The change of the hierarchy usu-
ally causes complete remodeling. Example of
these problems in conventional operation models
are shown in McNeile,A., Roubtsova.E. (2007).

ENABLING LOCAL REASONING
ON PARTS OF THE MODEL ABOUT
THE BEHAVIOR OF THE WHOLE

EXTREME inherits the property of local reason-
ing from Protocol Modelling enabling also direct
relations with the requirements for local reasoning.

Let us take a requirement “A submitted claim
is sorted as: Not Covered, Max Claim No Limit
Claim.”

This requirement corresponds to the protocol
machine Claim Sorting. We see that this machine
has the specified states: Not Covered, Max, No
Limit. Claim Sorting is included into protocol
machine Claim.

The state of the protocol machine Claim Sort-
ing is derived when the protocol machine Claim
accepts event Submit Claim. Event Submit Claim
contains information about Medical Procedure. If
this Medical Procedure has been included into a
group for Max Coverage, then the claim should be
sorted as Max Claim. The behaviour of Claim and
Claim Sorting is tested locally without analysis
of the complete state space of the model. The
proposed tests are the Submit Claim eventwith a
medical procedure from the group Max Coverage
and the check if it is sorted as Max Claim.

79

EXTREME

FUTURE RESEARCH DIRECTIONS

Modeling of More Abstract
Business Concepts

Controllable development of business is impos-
sible without monitoring of its state, capacities,
calculating key performance indicators and mak-
ing decisions for correct and timely investment.
Such monitoring happens both at the level of en-
terprises, enterprise departments and educational
institutions, but also at the level of ministries and
government. The major problem with monitoring
and decision support is different interpretation of
state, capacities, and key performance indicators.
This problem has an objective reason as even
businesses of the same branch have different
variations. Ambiguity and different understanding
of state, capacities and key performance indica-
tors cause problems for management in making
right decisions and for employees in directing
their efforts. Cloud technologies and mobile
technologies introduce new indicators that need
to be unambiguously understood.

Our preliminary studies show that conceptual
models of business capacities and KPIs lead to

unambiguous definitions. EXTREME allows for
building conceptual models of abstract business
concepts and key performance indicators using
ideas of goal-oriented approaches and protocol
modelling. Analysis of KPIs models may result
in useful standardisation of operational KPIs.
The classified KPIs and business capacities will
speed up solution of many business intelligence
tasks, lead to easy building of business analyt-
ics into information systems and eventually will
result in better decision support for business and
better decisions.

At the moment performance indicators are not
included into system models, but maintaining of
high performance is always a goal of a system.
The compositional nature of Protocol Models used
in our method to make requirements operational
gives the opportunity to raise the level of abstrac-
tion in models and relate many complex business
concepts to behavioral models. Such concepts as
business capabilities, Key Performance Indica-
tors (KPIs) and motivation models may extend
behavior models.

For example, let us see the monitoring of KPIs
as a new goal “The numbers of submitted and paid
claims per year are calculated.”

Figure 5. KPI: Submitted and paid claims per year

80

EXTREME

These KPIs are conceptually related to the
concept Claim, its attribute Submission Date, the
time concept Now and two values of the concept
State, namely the state value paidToMax and the
state value paidNoLimit. The conceptual model
is shown in Figure 5. The claims that have these
values of their State concept are paid.

In order to calculate KPI1: Number of submit-
ted claims, the date oneYearAgo from the value
of Now is calculated. Then the claim instances
with the value of the attribute Submission Date
after oneYearAgo are found and the KPI1: Num-
berOfClaims is calculated (see function getNum-
berOfClaims()).

In order to calculate KPI2:Number of paid
claims, the claims situated in the state paidToMax
or paidNoLimitthat submitted after the Submission
Date are found and their number is calculated
(function getNumberOfPaidClaims()).

The ability to derive states makes it possible to
calculate KPIs in Protocol Models. The metacode
of the Protocol Model and the corresponding java
code calculating the number of claim instances
is shown below.

OBJECT CounterNumberOfClaims

NAME Name

ATTRIBUTES Name: String, !NumberOfClaims:Integer,

!NumberOfPaidClaims:Integer

STATES created

TRANSITIONS @new*GetNumberOfClaims=created

EVENT GetNumberOfClaims

ATTRIBUTES CounterNumberOfClaims:CounterNumberOf

Claims, Name:String

#---

package Insurance;

import com.metamaxim.modelscope.callbacks.*;

import java.util.*;

public class CounterNumberOfClaims extends

Behaviour {

 public int getNumberOfClaims() {

 int NumberOfClaims=0;

 Date d = new Date();

 Calendar cal = Calendar.getIn-

stance();

 cal.add(Calendar.YEAR, -1);

 Date oneYearAgo = cal.getTime();

 Instance[] existingIns =

selectInState(“Claim”, “@any”);

 for (int i = 0; i < existingIns.

length; i++) {

 Date SD=existingIns[i].

getDate(“SubmissionDate”);

 if (SD.compareTo(oneYearAgo)>0)

 NumberOfClaims=NumberOfClaims+1;

 }

 return NumberOfClaims;

 }

 public int getNumberOfPaidClaims() {

 int NumberOfPaidClaims=0;

 Date d = new Date();

 Calendar cal = Calendar.getIn-

stance();

 cal.add(Calendar.YEAR, -1);

 Date oneYearAgo = cal.getTime();

 Instance[] PaidToMaxIns =

selectInState(“Claim”, “paidToMax”);

 for (int i = 0; i < PaidToMaxIns.

length; i++) {

 Date SD=PaidToMaxIns[i].

getDate(“SubmissionDate”);

 if (SD.compareTo(oneYearAgo)>0)

 NumberOfPaidClaims=NumberOfPaidC

laims+1;

 }

 Instance[] PaidNoLimitIns =

selectInState(“Claim”, “paidNoLimit”);

 for (int i = 0; i < PaidNoLimi-

tIns.length; i++) {

 Date SD=PaidNoLimitIns[i].

getDate(“SubmissionDate”);

 if (SD.compareTo(oneYearAgo)>0)

 NumberOfPaidClaims=NumberOfPaidCla

ims+1;

81

EXTREME

 }

 return NumberOfPaidClaims;

 }

 }

It is possible that during the modelling and
execution the stakeholder will decide that the date
of KPI monitoring is fixed and this concept Fixed
Monitoring Date will replace concept Now in the
conceptual model.

The discovery of patterns of protocol models of
different KPIs and other abstract business concepts
is one of directions for future work.

Tool Support for Traceability
of Requirements in Models

The goals and requirements are naturally kept in a
tree structure. From this tree structure is possible
to generate a textual document for metadata of
protocol machines. The goals and requirements
may be presented in this document as comments
following the hierarchy of requirements in the goals
tree. The meta-code of each protocol machine may
be written then under own requirements as we have
presented in the appendix. In case of crosscutting
concerns, the meta-code of a protocol machine may
have a link to the requirement in the tree structure
and the description of the relevant requirements
from the branch of the goal tree may be generated
in its comments when necessary. This means that
the problem of traceability of requirements in
protocol models will be solved. The traceability
of requirements in protocol models needs to be
supported with a tool in near future.

CONCLUSION

The correspondence between the strategic and the
operational levels of a business is a success factor
of the business. In this chapter, we have presented
a new method EXTREME that combines the ideas
of thegoal models at the strategic level with the

executable protocol models at the operational level.
The uniqueness of the proposed combination is in
synchronous semantics both at the strategic and
the executable levels that easies both the goal
refinement and the executable modeling.

The name of the method EXTREME can be
associated with Extreme Programming (Cockburn,
2001b). The associating is not wrong as the ideas
of Extreme Programming to improve a software
project on the basis of five essential principles;
communication, simplicity, feedback, respect, and
courage are present in the method EXTREME.
The difference is that the EXTREME can be also
used for modeling of businesses, not necessarily
for programming software, and the five principles
are used already at the stage of requirements
engineering before the implementation phase.

The extended CSP parallel composition used
in Protocol Modelling gives extra decomposition
flexibility and ability to reason locally avoiding
the state space explosion at the stage of analysis.

The goal-orientation brings the order and
simplicity into decomposition, testing and evolu-
tion. New goals are refined as requirements and
corresponding new protocol machines and CSP
composed with the rest of the model. The existing
model parts are not changed and preserve their
behaviour in the growing model. Synchronous
nature of protocol models does not add any states
that cannot be explained by goals and their refine-
ment. Therefore the execution of models can be
easily controlled from the goal perspective by the
stakeholders.

The method has been tested for insurance prod-
ucts in Oracle Nederland (Verheul & Roubtsova,
2011). Currently there is a running experiment in
two companies that want to improve requirements
management of product releases by application of
the EXTRIME method.

82

EXTREME

REFERENCES

Alsumait., et al. (2003). Use case maps: A visual
notation for scenario-based requirements. In Pro-
ceedings of the 10th International Conference on
Human-Computer Interaction. IEEE.

Cockburn, A. (2001a). Writing effective use cases.
Reading, MA: Addison-Wesley.

Cockburn, A. (2001b). Agile software develop-
ment. Reading, MA: Addison-Wesley Profes-
sional.

Dardenne, A., van Lamsweerde, A., & Fickas, S.
(1991). Goal-directed requirements acquisition.
Science of Computer Programming, 20(1-2), 3–50.
doi:10.1016/0167-6423(93)90021-G.

Darimont, R., & Lemoine, M. (2006). Goal-
oriented analysis of regulations. In Proceedings
of the International Workshop on Regulations
Modelling and their Validation and Verification,
REMO2V’06, (pp. 838-844). REMO2V.

Firesmith, D. G. (2005). Are your requirements
complete? Journal of Object Technology, 4(1),
27–43. doi:10.5381/jot.2005.4.1.c3.

Harel, D., & Kugler, H. (2002). Synthesizing state-
based object systems from LSC specifications.
Foundation of Computer Science, 13(1), 5–51.
doi:10.1142/S0129054102000935.

Hoare, C. (1985). Communicating sequential
processes. New York: Prentice-Hall International.

ITU. (2008). Formal description techniques (FDT)
– User requirements notation recommendation
Z.151 (11/08). Retrieved September 3, 2012, from
http://www.itu.int/rec/T-REC-Z.151-200811-I/en

Jensen, K. (1997). Coloured Petri nets: Basic con-
cepts, analysis methods, and practical use. Berlin:
Springer Verlag. doi:10.1007/978-3-642-60794-3.

Kavakli, E. (2002). Goal-oriented requirements
engineering: A unified framework. Require-
ments Engineering, 6(4), 237–251. doi:10.1007/
PL00010362.

Letier, E. et al. (2008). Deriving event-based
transition systems from goal-oriented require-
ments models. Automated Software Engineering,
15(2), 175–206. doi:10.1007/s10515-008-0027-7.

McNeile, A., & Roubtsova, E. (2007). Protocol
modelling semantics for embedded systems. In
Proceedings of the Special Session on Behavioural
Models for Embedded Systems at the IEEE Second
International Symposium on Industrial Embed-
ded Systems, SIES’2007. Lisbon, Portugal: IEEE.

McNeile, A., & Roubtsova, E. (2008). CSP parallel
composition of aspect models. In Proceedings of
the International Workshop on Aspect-Oriented
Modelling, AOM’08. ACM Press.

McNeile, A., & Roubtsova, E. (2010). Aspect-
oriented development using protocol modeling.
Transactions on Aspect-Oriented Software De-
velopment, 7, 115–150.

McNeile, A., & Simons, N. (2006). Protocol
modelling: A modelling approach that supports
reusable behavioural abstractions. Software &
Systems Modeling, 5(1), 91–107. doi:10.1007/
s10270-005-0100-7.

McNeile, A., & Simons, N. (2011). Modelscope.
Retrieved September 3, 2012, from http://www.
metamaxim.com

Regev, G., & Wegmann, A. (2011). Revisiting
goal-oriented requirements engineering with a
regulation view. Lecture Notes in Business Infor-
mation Processing, 109.

Respect-IT. (2007). A KAOS-tutorial. Retrieved
September 3, 2012, from http://www.objectiver.
com/fileadmin/download/documents/KaosTuto-
rial.pdf

83

EXTREME

Roubtsova, E. E. (2011). Reasoning on models
combining objects and aspects. Lecture Notes
in Business Information Processing, 109, 1–18.
doi:10.1007/978-3-642-29788-5_1.

Tversky, A., & Simonson, I. (1993). Article. Man-
agement Science, 39(10), 1179–1189. doi:10.1287/
mnsc.39.10.1179.

UML2.OMG. (2007). Unified modeling language:
Superstructure version 2.1.1. Formal/2007-02-03.

Van, H. T., et al. (2004). Goal-oriented require-
ments animation. In Proceedings of RE’04: 12th
IEEE International Requirements Engineering
Conference, (pp. 218-228). IEEE.

van Lamsweerde, A. (2004). Goal-oriented
requirements engineering: A roundtrip from
research to practice. In Proceedings of the 12th
IEEE International Requirements Engineering
Conference. Kyoto, Japan: IEEE.

Verheul, J., & Roubtsova, E. (2011). An execut-
able and changeable reference model for the health
insurance industry. In Proceedings of the 3rd
International Workshop on Behavioural Model-
ling - Foundations and Applications. ACM.

Yu, E. (1995). Modelling strategic relationships
for process reengineering. (Ph.D. Thesis). Dept.
of Computer Science, University of Toronto,
Toronot, Canada.

Zave, P., & Jackson, M. (1997). Four dark corners
of requirements engineering. ACM Transactions
on Software Engineering and Methodology, 6(1),
1–30. doi:10.1145/237432.237434.

KEY TERMS AND DEFINITIONS

Adequate Completeness of Requirements:
Requirements are adequately complete if all
specified requirements are met by an executable
system model and the model can be used to reason
about the system.

CSP Parallel Composition: Is an algorithm
of constructing sequences of events accepted by
the abstracting from data. Processes P and Q
must both be able to per form event
before that event can occur. Processes communi-
cate via synchronous message passing.
() | [{ }] | ()a P a a Q→ → .

CSP Parallel Composition Extended for
Machines with Data: Is an algorithm of construct-
ing sequences of events accepted by the modeled
system including data storages and state spaces.

Event: A recognized happening in an environ-
ment that can be expressed as a data structure. One
element of this data structure is an event type.

Goal: A general name of a piece of system
functionality; a description of a system state be-
ing a result of an execution of the piece of system
functionality.

Goal Tree: A tree the root of which is a system,
the next nodes is the system goals; the goals are
refined to requirements.

Protocol Machine: Is a state-transition con-
struction with data storage that defines ability of
a system to accept events from environment. If a
pre-event or a post-event constraint on the data
storage is not met then the machine refuses the
event.

Requirement: A description of system reac-
tions on related events.

EXTREME

84

APPENDIX

Meta Code of a Protocol Model of an Insurance Business

MODEL Insurance
#---
#Product is composed.
#A product manager created, unique medical procedure. Each medical procedure c is added to only one
#group of medical procedures.

OBJECT Medical Procedure
 NAME Name
 INCLUDES Duplicate Check
 ATTRIBUTES Name: String, MPGroup:MPGroup
 STATES created, added
 TRANSITIONS @new*Create Medical Procedure=created,
 created*AddMPintoGroup=added,
 added*Submit Claim=added,

BEHAVIOUR !Duplicate Check
 STATES unique, duplicate
 TRANSITIONS @any*Create =unique

#A product manager created a unique group of medical procedures, Each group is added to only #one
#Coverage (MaxCoverage or No Limit coverage.

OBJECT MPGroup
 NAME Name
 INCLUDES Duplicate Check
 ATTRIBUTES
 Name: String,
 !CurrentState:String,
 MaxCoverage:MaxCoverage,
 NoLimitCoverage:NoLimitCoverage
 STATES created, coveredMax,
 coveredNoLimit
 TRANSITIONS @new*Create MPGroup=created,
 created*AddMPintoGroup=created,
 reated*!AddGroupToNoLimitCoverage=coveredNoLimit,
 created*!AddGroupToMaxCoverage= coveredMax,
 coveredMax*ChangeMPGroup=created,
 coveredNoLimit*ChangeMPGroup=created,

EXTREME

85

#A product manager created a Max Coverage with the size of Max. The coverage is added to a #Product.

OBJECT MaxCoverage
 NAME Name
 ATTRIBUTES
 Name: String,
 MaxBalance:Currency,
 Product:Product,
 Product Name:String
 STATES created,
TRANSITIONS @new*Create MaxCoverage =created,
 created*AddGroupToMaxCoverage= created,
 created*Create CoverageMax= created,

#A product manager created a No Limit Coverage. The coverage is added to a Product.

OBJECT NoLimitCoverage
NAME Name
 ATTRIBUTES
 Name: String,
 Product:Product,
 Product Name:String
 STATES created,
 TRANSITIONS @new*Create NoLimitCoverage =created,
 created*AddGroupToNoLimitCoverage= created,
 created*Create CoverageNoLimit= created,

#A product manager created a product and offers it to the market.

OBJECT Product
 NAME Name
 INCLUDES Duplicate Check
 ATTRIBUTES Name:String
 STATES created, offered
 TRANSITIONS @new*Create Product=created,
 created* Create MaxCoverage=created,
 created*Create NoLimitCoverage=created,
 created*AddGroupToMaxCoverage=created,
 created*AddGroupToNoLimitCoverage=created,
 created*Offer Product=offered,
 offered*Buy Policy=offered

EVENT Create MaxCoverage
ATTRIBUTES MaxCoverage:MaxCoverage,
 Name: String,
 MaxBalance:Currency,
 Product:Product
EVENT Create NoLimitCoverage
ATTRIBUTES NoLimitCoverage:NoLimitCoverage,
 Name:String,
 Product:Product

EXTREME

86

EVENT AddMPintoGroup
ATTRIBUTES Medical Procedure: Medical Procedure,
 MPGroup:MPGroup
EVENT Create Medical Procedure
ATTRIBUTES Medical Procedure: Medical Procedure,
 Name:String
EVENT Create MPGroup
ATTRIBUTES Name: String, MPGroup:MPGroup
EVENT AddGroupToNoLimitCoverage
ATTRIBUTES MPGroup:MPGroup,
 NoLimitCoverage:NoLimitCoverage,
 Product:Product
EVENT AddGroupToMaxCoverage
ATTRIBUTES MPGroup:MPGroup,
 MaxCoverage:MaxCoverage,
 Product:Product
EVENT ChangeMPGroup
ATTRIBUTES MPGroup:MPGroup

EVENT Create Product
ATTRIBUTES Product:Product,
 Name:String

EVENT Offer Product
ATTRIBUTES Product:Product

GENERIC Create
MATCHES Create Medical Procedure,Create Product,Create MPGroup

#A policy is bought by a registered customer.
#A Customer is registered.

OBJECT Person
NAME Name
INCLUDES Duplicate Check
 ATTRIBUTES
 Name: String,Policy: Policy
 STATES created
 TRANSITIONS @new*Create Person=created,
 created*Buy Policy=created,

#A registered customer bought a policy.

OBJECT Policy

 NAME Name

 INCLUDES Duplicate Check

 ATTRIBUTES Name: String, Product:Product, Person:Person

 STATES created, deleted, offered

 TRANSITIONS @new*Buy Policy=created,

 created*Submit Claim=created,

 created*Create CoverageMax=created,

 created*Create CoverageNoLimit=created

EXTREME

87

#The handler for each Coverage of the policy are created.
#The initial Balance for each Coverage Max is equal to the Max in Max Balance assigned to #attributes
#of Max Coverage.

OBJECT CoverageMax

NAME CoverageMax Name

 ATTRIBUTES CoverageMax Name: String,MaxCoverage:MaxCoverage,

 Balance:Currency PaymentToMax:Currency, Policy:Policy

 STATES created

 TRANSITIONS @new*Create CoverageMax =created,

 created*!PayToMax=created,

OBJECT CoverageNoLimit

NAME CoverageNoLimit Name

 ATTRIBUTES CoverageNoLimit Name:String,PaymentNoLimit:Currency,

Policy:Policy

 STATES created

 TRANSITIONS @new*Create CoverageNoLimit=created,

 created*!PayNoLimit=created,

EVENT !Buy Policy

ATTRIBUTES Policy:Policy, Policy Number:String, Person:Person, Product:Product

#---

#A Claim of a client with a bought policy is handled.
#A registered customer with the bought policy submitted a claim.

OBJECT Claim

 NAME Name

 INCLUDES Duplicate Check,Sorting Claim,

 ATTRIBUTES Name: String, Policy:Policy, Medical Procedure: Medical

Procedure,

 Amount:Currency, SubmissionDate:Date,

 CoverageMax:CoverageMax, CoverageNoLimit:CoverageNoLimit,

 STATES created, paidToMax, paidNoLimit

 TRANSITIONS @new*Submit Claim=created,

 created*PayToMax=paidToMax,

 created*PayNoLimit=paidNoLimit

EXTREME

88

#A submitted claim is sorted as:
#Not Covered,
#Max Claim
#No Limit Claim
 #A Max Claim is paid as follows:
 #If the Coverage Max. Balance=0 I, then the Max Claim is refused.
 #If the Coverage Max. Balance>0 then:
 #If Max Claim. Amount <= Coverage Max. Balance, the claim is paid;
 #If Max Claim. Amount >Coverage Max. Balance, then (
 #Coverage Max. Balance- Max Claim. Amount) is paid and
 #Coverage Max. Balance=0.

 #A Not Covered claims is refused.
 #A No Limit claim is always paid.

BEHAVIOUR !Sorting Claim

 ATTRIBUTES

 STATES Max, NoLimit, NotCovered

 TRANSITIONS Max*PayToMax=@any,

 NoLimit*PayNoLimit=@any

EVENT PayToMax

ATTRIBUTES CoverageMax:CoverageMax, Claim: Claim

EVENT PayNoLimit

ATTRIBUTES CoverageNoLimit:CoverageNoLimit, Claim:Claim

EVENT Create CoverageMax

ATTRIBUTES CoverageMax:CoverageMax, Policy:Policy, CoverageMax Name:String,

Balance:Currency, MaxCoverage:MaxCoverage

EVENT Create CoverageNoLimit

ATTRIBUTES CoverageNoLimit:CoverageNoLimit, Policy: Policy, CoverageNoLimit

Name: String, NoLimitCoverage:NoLimitCoverage

EVENT Submit Claim

ATTRIBUTES Claim:Claim, Policy:Policy, Claim Number:String, Medical Procedure:

Medical Procedure, Amount:Currency, SubmissionDate:Date

EVENT Create Person

ATTRIBUTES Person:Person, Name: String

#---

	Title Page
	Copyright Page
	Advances in Systems Analysis, Software Engineering, and High Performance Computing (ASASEHPC) Book Series
	Editorial Advisory Board and List of Reviewers
	Table of Contents
	Detailed Table of Contents
	Foreword
	Preface
	Acknowledgment
	High-Integrity Model-Based Development
	UML-Driven Software Performance Engineering: A Systematic Mapping and Trend Analysis
	EXTREME: EXecuTable Requirements Engineering, Management, and Evolution
	Ptolemaic Metamodelling? The Need for a Paradigm Shift
	Runtime Integration Capability for Distributed Model Driven Applications
	CMF: A Crop Model Factory to Improve Scientific Models Development Process
	Model-Driven Engineering for Electronic Commerce
	Process for the Validation of System Architectures against Requirements
	Demystifying Domain Specific Languages
	A Model-Based Approach to Aligning Business Goals with Enterprise Architecture
	Towards Public Services and Process Integration: A Domain-Specific Modeling Approach
	Architecture-Driven Modernization for Software Reverse Engineering Technologies
	Adaptive Software based on Correct-by-Construction Metamodels
	Compilation of References
	About the Contributors
	Index

