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EXTREME:
EXecuTable Requirements Engineering, 

Management, and Evolution

ABSTRACT

Requirements engineering is a process of constantly changing worlds of intentions, goals, and system 
models. Conventional semantics for goal specifications is synchronous. Semantics of conventional system 
modeling techniques is asynchronous. This semantic mismatch complicates requirements engineering. 
In this chapter, we propose a new method EXTREME that exploits similarities in semantics of goal 
specification and executable protocol models. In contrast with other executable modelling techniques, 
the semantics of protocol modelling is based on a data extended form of synchronous CSP-parallel 
composition. This synchronous composition provides advantages for relating goals and system models, 
reasoning on models, requirements management, and evolution.

INTRODUCTION

It is ‘’reasonably well known that requirements 
will never be totally complete, finished, and final-
ized as long as a system is in service and must 
evolve to meet the changing needs of its customers 
and users” (Firesmith, 2005). However, there is 
a temporary notion of adequate completeness at 
some moment in time when the stakeholders are 
agreed on requirements. Adequate completeness 
of requirements is needed to estimate the devel-
opment costs and to avoid incorrect assumptions 
for implementation decisions.

One of the powerful instruments to get ad-
equately complete requirements is executable 
system modeling. Psychology studies show that 
people’s thinking is context related (Tversky & 
Simonson, 1999). For requirements engineering 
this means that stakeholders can identify missing 
or tacit requirements at the moment they see the 
behaviour of the system model. Hence, the execut-
able models offer to stakeholders the contextual 
basis for identification of incompleteness. The 
semantics of executable modelling should be 
consistent with the semantics of goals.

In practice there is a semantic mismatch. The 
semantics of goals is synchronous. The conven-
tional executable system modeling techniques are 
asynchronous. Asynchronous execution of the 

Ella Roubtsova
Open University of The Netherlands, The Netherlands



66

EXTREME

models gives birth to states that are not expressed 
by the goals. In such states, stakeholders do not 
understand the execution of the models and cannot 
properly evaluate the models and reason on them.

In this chapter we propose a new method EX-
TREME that exploits similarities in semantics of 
goal specification and executable protocol models 
in order to simplify executable requirements en-
gineering, management and evolution. Protocol 
models use a data extended form of synchronous 
CSP-parallel composition. The combination of 
protocol models and goal-oriented approaches 
semantically coherent, all states can be goal in-
terpreted and this eases reasoning on models in 
terms of goals, goal refinement and identification 
of missing requirements.

Before showing the EXTREME method, we 
first remind elements of goal modelling. Then we 
remind elements of protocol modeling and show 
how to create protocol models corresponding to 
goals. The process is illustrated with a case from 
the insurance domain. We discuss the semantic 
elements of Protocol modelling that make it suit-
able for combination with goal-oriented modeling.

GOAL MODELLING

Goal-Oriented Requirements Engineering 
(GORE) is a well-established group of approaches 
(Kavakli, 2002; van Lamsweerde, 2004; Darimont 
& Lemoine, 2006; Regev & Wegmann, 2012). 
The aim of a goal-oriented approach is to justify 
requirements by linking them to higher-level goals.

The notion of a goal is used as a partial de-
scription of a system state being a result of an 
execution of the system. The authors of the GORE 
methods emphasize the similarity between goals, 
requirements, and concerns and propose to com-
bine them in one tree structure. Goals are refined 
by requirements and concerns. The goal models 
are used to keep the business motivation in mind 
of requirement engineers and to elaborate the 
strategic goals with requirements and concerns.

An example of a goal tree is shown in Figure 
1. The top nodes of Figure 1 present business 
goals of a simplified system supporting insurance 
business. The goals are:

• A product is composed.
• A policy is bought by a registered customer.
• A claim of a client with a bought policy is 

handled.

Each parent goal (the one pointed to by the 
arrow) is refined with a list of sub-goals and 
requirements. The leaves of the tree present sys-
tem requirements. Business and strategic goals 
are expressed using concepts of the stakehold-
ers’ vocabulary. Lower-level goals are typically 
expressed using words from the stakeholders’ 
vocabulary as well as specific technical terms 
introduced in the model on purpose and where 
necessary (Respect-IT, 2007).

Identifying goals is not proceeding exclusively 
from either a top-down or a bottom-up approach. 
In most cases the two approaches are used at the 
same time. Refining goals in a goal model often fol-
lows a so-called “milestone approach” (although 
there are many other decomposition approaches). 
Milestone goals represent goals as intermediate 
states in a process aimed to achieve the top goals. 
For example, the goal “A product is composed” 
(Figure 1) is refined by goals “There is a list of 
medical procedures”, “Medical procedures are 
combined into groups”, “Each group corresponds 
to a NoLimit(Coverage) or MaxCoverage”.

GORE trees are also used to relate goals and 
structural elements of the: Entities, Agents, and 
Operations. Entities represent passive objects in 
contrast with Agents that represent active objects. 
Agents are either human beings or automated 
components that are responsible for achieving 
requirements. The goals of this level assigned 
to the humans are called expectations. Software 
agents are responsible for requirements. Agents, 
Entities and their Relations are captured in an 
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object model. Often goals are assigned to several 
agents rather than a single one.

In order to achieve goals software agents per-
form operations. The operation model in GORE 
sums up all the behaviors that agents need to 
have to fulfill their requirements. Behaviors are 
expressed in terms of operations performed by 
agents. Those operations work on objects (entities 
and agents) described in the object model: they 
can create objects, provoke object state transitions 
or trigger other operations through the send and 
receive events.

GORE operation diagrams are either data flow 
or control flow diagrams. Data flow and control 
flow diagrams have asynchronous semantics. This 
is the place where the operation model introduces 

states that cannot be related to goals. Even if the 
operational model is executable, not all of its 
states can be related to goals. A simple example is 
asynchronous arriving of two data items to reach 
a state expressed with a goal. In the asynchronous 
model the items arrive one after another and 
produce intermediate state when one item has ar-
rived and the other has not arrived yet. This state 
cannot be interpreted from the goal perspective 
and may be seen by stakeholders as an evidence 
of wrong model behaviour. Letier et al. (2008) 
note that in order to be semantically equivalent 
to the synchronous goal models, the operation 
models need to refer explicitly to timing events. 
It seems that the object and operation models 
present the abstraction level that is lower than the 

Figure 1. Goal tree of an insurance business
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level needed for the requirement analysis by the 
stakeholders. GORE methods need synchronous 
compositional executable behavioural models 
corresponding to goals.

PROTOCOL MODELLING

Protocol models have elements of synchroniza-
tion needed to present the system behavior at 
the higher level of abstraction than the operation 
diagrams. We propose to relate goals to protocol 
machines instead of class and operation diagrams. 
Synchronously composed protocol machines form 
together the protocol model corresponding to 
goals. In Figure 2 a dashed arrow is drawn from 
a box presenting a protocol machine to the box 
presenting the corresponding requirement. In this 
section, we discuss the elements of protocol models 
and the advantages of using them in goal–oriented 
approaches.

Protocol Modelling approach was developed 
by McNeile and Simons (2006). This approach 
can be viewed as a combination of object life-
cycle modelling and the data-extended synchro-
nous CSP-parallel composition. The initial ideas 
of this composition technique were borrowed from 
the process algebra of Communicating Sequential 
Processes (Hoare, 1985) and then extended in 
order to enable composition of models with data. 
In this part we present main elements of Protocol 
Modelling. We also show that this approach pro-
duces the system models, all states of which can 
be related to goals.

A protocol machine is a state-transition 
structure with data storage that defines ability 
of a system to interact with the environment by 
accepting events from environment or refusing 
events. A protocol machine can be seen like an 
object that exists even without its creation in its 
initial state. An object goes into its active state 
with a creating event.

For example, the protocol machine Medical 
Procedure defines the attributes and stored states 

of the life cycle and transitions of every object of 
type Medical Procedure. Transitions define the 
interactions with the environment recognized by 
the object.

  OBJECT Medical Procedure 

    NAME Name 

    ATTRIBUTES Name: String, MPGroup:MPGroup 

    STATES created, added 

    TRANSITIONS 

        new*Create Medical Procedure=created 

        created*AddMPintoGroup=added. 

        added*Submit Claim=added.

The named interactions are specified as event 
types. Event types are presented as data structures. 
The attributes of event types are used as data con-
tainers for the data exchange with the environment.

For example, the definition of event Create 
Medical Procedure shown below tells that this 
event is used by the protocol machine Medical 
Procedure and it takes a string from environment 
to name this medical procedure.

EVENT Create Medical Procedure

ATTRIBUTES 

    Medical Procedure: Medical Procedure, 

Name: String

Being in a state specified by a transition, the 
protocol machine accepts the event of this tran-
sition. If the protocol machine is not in the state 
where a given event causes a transition, this event 
is refused even if the event is recognized by the 
protocol machine. If an event has been accepted, it 
is processed until the quiescent state of the protocol 
machine. During this processing the other events 
are refused. This behavior of protocol machines 
is different from behavior of state machines. The 
UML state machines accumulate all recognized 
events in a queue so that they may cause a transition 
in the future (UML2.OMG, 2007). Accumulating 
events in the queues causes extra states of the 
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model and non-determinism in behavior of state 
machines. Protocol machines are deterministic.

A protocol model is a synchronous CSP parallel 
composition of all protocol machines in the model 
(McNeile & Simons, 2006). The composition is 
used to compose different views on the system 
expressed as protocol machines. Protocol ma-

chines work synchronously resulting in observable 
behavior. That is why an event is only accepted 
by the model if all protocol machines recognizing 
this event accept it. Otherwise the event is refused. 
This is the core of the CSP parallel composition.

Figure 2. Goals and corresponding protocol machines
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For example, event AddMPintoGroup synchro-
nizes two protocol machines Medical Procedure 
and MPGroup:

EVENT AddMPintoGroup

ATTRIBUTES 

  Medical Procedure: Medical Procedure, 

MPGroup:MPGroup

We say that there is a CSP parallel composi-
tion: Medical Procedure || MPGroup.

Event Submit Claim synchronizes protocol 
machines Claim, Polis and Medical Procedure 
and takes from the environment the Claim Number 
and its Amount.

EVENT Submit Claim 

ATTRIBUTES 

  Claim:Claim, Polis:Polis, Medical 

Procdure: Medical Procedure, 

  Claim Number:String, Amount: 

Currency

The result of synchronization is the CSP 
parallel composition: Claim || Polis || Medical 
Procedure.

The complete protocol model in our insurance 
case is the CSP parallel composition the instances 
of 12 protocol machines. The number of instances 
is not restricted and depends on the interactive 
process of model execution. The meta-code of 
the model is given in the appendix.

The data extension of the initial CSP parallel 
composition semantics concerns with the ability of 
protocol machines to read but not alter the state of 
other protocol machines, so that the state causing 
accepting or refusing events can be formulated 
using states and local storages of all protocol 
machines in the model and the data from events.

Another consequence of the data extension 
of the CSP composition is the ability of protocol 
machines to derive own states from the states 
of other protocol machines. Derived states are 
calculated from the values of the stores states 

specified for protocol machines. A derived state 
extends the state space of the system model and 
used to generalize the state of different protocol 
machines for a specific system view. For example, 
if all medical procedures have been included into 
a group, the state “the group has been completed” 
can be derived. Having derived states we can 
separate stored state space and derived state space 
for reasoning and analyses.

The updating of the stored space of a protocol 
model is restricted by accepting one event at a 
time and handing it until the new quiescent state 
of the model. Only quiescent states visible from 
the environment are included into protocol models. 
As only quiescent states are specified in the goals, 
the semantics of protocol model corresponds to 
the semantics of goal specification.

A protocol machine called Behaviour may 
be included into another protocol machine. This 
means that an instance of the Behaviour is auto-
matically created with the instance of the including 
protocol machine.

Behaviours are equally CSP parallel composed 
with other protocol machines.

Deriving state and updating state of several 
protocol machines demand some search of in-
stances of protocol machines and their attributes. 
These search commands are specified in small 
java files using a set of search functions built 
into the Modelsope tool. There are three types 
of search functions:

1.  Function selectByRef(“Behaviour_
Name”,“Attribute_Name”) returns an ar-
ray of instances, all of which include the 
specified behaviour (or object) and have the 
specified attribute referencing this.

2.  Function selectInContext (“Behaviour_
Name”,“Event_Name”) returns an array of 
instances, all of which include the specified 
behaviour and have the specified event with 
the specified subscript in context.
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3.  Function selectInState (“Behaviour_
Name”,“State”) returns an array if instances, 
all of which include the specified behaviour.

The data extension of the CSP parallel com-
position for protocol machines makes protocol 
models flexible in presentation of any modeling 
abstraction, such as objects and crosscutting con-
cerns (see details in McNeile & Roubtsova, 2008, 
2010) and adopting any model change as a sepa-
rate protocol machines. The experimental studies 
demonstrate scalability and change adoptability 
on the applications of industrial size (Verheul & 
Roubtsova, 2011).

Events are identified in the goal-oriented ap-
proaches, but they are not used for object com-
munication and do not contain data. Events in the 
goal-oriented approaches trigger operations. Pro-
tocol models work at the higher level than the level 
of operations. Protocol machines communicate 
with environment accepting or refusing events and 
by generating events to the environment. Dealing 
with events with data in protocol machines allows 
abstracting from the send-receive-operations and 
avoiding the non-determinism caused by them. The 
use of operations is an implementation decision 

which the protocol models avoid as ‘’requirements 
have to describe what the system does, not how 
its does it (Zave & Jackson, 1997).

Protocol models are directly executable in the 
Modelscope tool (McNeile & Simons, 2011). The 
tool provides a generic interface for execution of 
any protocol model allowing submitting events 
and observation of results, protocol machine, 
and their attributes. The interface generated by 
the Modelscope tool for this model is shown in 
Figure 3.

Local Reasoning on Protocol 
Machines

Protocol Models are unique in the sense that they 
possess the property of local reasoning on each 
protocol machine about the behavior of the whole 
system. The local reasoning on protocol machines 
was proven in McNeile and Roubtsova (2008), 
and it was discussed in detail in McNeile and 
Roubtsova (2010) and Roubtsova (2011).

Local reasoning in Protocol Modelling is based 
on a property of CSP composition.

Figure 3. Execution of the protocol model
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• Let us take a sequence, S, of events that is 
accepted by the CSP parallel composition 
of protocol machines (M1 || M2) of the two 
machines M1 and M2.

• Then let us take the subsequence, S0, of S 
obtained by removing all events in S that 
are not recognized by the protocol machine 
M1.

• S0 will be accepted by the machine M1 by 
itself.

In other words, composing M1 with another 
machine with cannot “break its trace behavior 
of M1. We can use this property to support local 
reasoning on each protocol machine about the 
behaviour of the whole model. If by removing 
all events in S that are not recognized by M1, we 
have got a sequence S0 that were not acceptable 
to M1 or M2, then the original sequence S could 
not have been acceptable to (M1 || M2).

Each protocol machine has usually 1-5 states 
(Figure 4). The set of its sequences is observable. 
The loops can produce infinite traces, but testing 
of the finite set of traces for each simple protocol 
machine is sufficient to test one protocol machine. 
This means that verification of any requirement 
may be reduced to testing of a finite set of traces 
of relevant protocol machines. The testing of goals 
means that for each goal there is a reachable state 
and there are no states that do not correspond to 
one or another intermediate or final goal leading 
to the final state.

PROTOCOL MODEL 
CORRESPONDING TO THE GOAL 
MODEL

The state-transition part of protocol models can 
be presented graphically. Graphical presentation 
of CSP composition is possible but not necessary. 
The CSP parallel composition is comparable with 
an interpreter that executes the model interacting 
with its environment.

The graphical presentation of our case is shown 
in Figure 4. States of any protocol machine are 
ellipses, events are labels on arcs and transitions 
are triples of two ellipses and a labeled arc between 
them. The graphical presentation does not allow 
adequate specification of data.

We discuss this correspondence of goals and 
protocol machines goal by goal.

Goal “A Product is Composed”

Defining the goal “A product is composed” via 
sub-goals and requirements we identify concepts 
Medical procedure, MPGroup, NoLimit Coverage, 
Max Coverage and Product. Each of the concepts 
is specified as a protocol machine.

In order to create an instance of a Product 
the concept Medical procedure is populated with 
instances. Chosen instances of Medical Procedure 
are combined in one MPGroup and this group is 
assigned to a NoLimit Coverage instance. Another 
group is assigned to Max Coverage.

Several instances of Max Coverage can be 
defined with different attribute Max Balance. A 
completely composed product is offered to the 
market. Acceptance of the event Offer Product 
transits the instance of a Product to state offered. 
If a product is in the state offered (Figure 4), it 
is available for clients willing to buy a policy. At 
this moment the actor Client may submit events 
to the model.

Almost all events recognized by described 
protocol machines are submitted to the system 
by the actor called Product Manager and this is 
described in the meta-code in the Appendix. The 
specification of an actor selects protocol machines 
visible to a particular interacting actor from the 
actor specification and metacode of corresponding 
protocol machines the Modelscope tool generates 
the Product Manager interface to test the model.
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Unfolding Hidden Requirements

Very often during the execution of the life cycle 
events, a stakeholder may recognize a tacit re-
quirement.

For example, a stakeholder executes the model 
and creates two medical procedures with the same 
name. The stakeholder decides that this is not 
what he wants and any Medical procedure; any 
MPGroup and any Product should be unique in the 
system. To achieve this crosscutting requirement 
a protocol machine that controls the duplication 

can be added and CSP composed with the model. 
The meta-code of the protocol machine Duplicate 
Check is presented below and in Figure 4. This 
protocol machine allows proceeding of event 
Create only if the created instance does not exist.

BEHAVIOUR !Duplicate Check

    STATES unique, duplicate 

    TRANSITIONS @any*Create =unique

Graphical presentation of protocol machines 
with derived states demands particular attention. 

Figure 4. Protocol model
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We depict derived states as double line ellipses. 
The function of state derivation is specified in a 
java file and it is not presented in the Figure 4.

Derived states should not form pairs to a 
specify transition. A derived state constraints 
the acceptance of an event. If a derived state 
presents a pre-state of an event then an outgoing 
arc is labeled with this event. If a derived state 
presents a post-state of an event then an ingoing 
arc is labeled with this event.

If the event recognized by the machine with 
derived states is accepted by the model then the 
resultant state is defined by protocol machines 
with stored states accepting this event.

The behaviour Duplicate Check is a cross-
cutting concern, as it is included into protocol 
machines Medical Procedure, MP Group and 
Product. This means that an instance of Duplicate 
Check is created with any instance of Medical 
Procedure, MP Group and Product and CSP 
composed with the model.

The exclamation symbol in the metacode BE-
HAVIOUR !Duplicate Check means that there is a 
java code corresponding to the protocol machine. 
The java code is shown below. It finds all instances 
of the hosting protocol machine and checks if 
there is an instance with the same name and the 
same identification. The Duplicate Check protocol 
machine with the corresponding code is used for 
modelling the uniqueness constraint. The user does 
not see the java code but she executes the model 
and is able to create and use only unique instances.

package Insurance;

import com.metamaxim.modelscope.callbacks.*; 

 

public class DuplicateCheck extends 

Behaviour { 

public String getState() { 

         String myName=getString(“Name”); 

          Instance[] existingIns = this 

selectInState(this.getObjec 

Type(), “@any”); 

        for (int i = 0; i < existingIns.

length; i++) 

        if(existingIns[i].getString(“Name”).

equals(myName)&& !existingIns[i].

equals(this)) 

    return “duplicate”; 

    return “unique”; 

  } 

  }

Goal “A Policy is Bought by 
a Registered Customer”

For this goal concepts Person and Policy have 
been recognized and the corresponding protocol 
machines have been specified. A person and a 
policy should be unique, so the Duplicate Check 
is included into the protocol machines Person 
and Policy.

Goal “A Claim of a Client with 
a Bought Policy is Handled”

Unfolding Hidden Requirements

1.  Concept Claim is identified from this goal. 
A claim can be paid without limit or paid 
to maximum. This specification hides the 
need of classification of claims.

2.  Buying a policy means some obligations for 
the insurance business to create containers 
for coverages for handling the policy limits. 
When the payment takes place the corre-
sponding “container” is updated. Creating 
containers are expressed in requirements. 
The rules of these updates are not presented 
in the requirements.

3.  We improve the situation with tacit require-
ments about the claim classification by 
adding a protocol machine Claim Sorting 
included into protocol machine Claim. 
The behaviour Claim Sorting checks if the 
medical procedure of the submitted claim 
belongs to the group assigned to the NoLimit 
Coverage or one of the Max Coverages in the 
policy of the client. If the medical procedure 
is not assigned to a group, it is not covered. If 
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it is assigned, then correspondingly state Max 
or NoLimit is derived for protocol machines 
Claim Sorting (Figure 4). In state Max event 
PayToMax is allowed. In state NoLimit event 
Pay NoLimit is allowed.

4.  We improve the situation with the specifi-
cation of claim handling. We have identi-
fied that we need concepts of “containers” 
that will be updated with claim handling. 
To support modeling of claim handling 
from the point of view of the insurance 
business we create protocol machines 
CoverageNoLimit and CoverageMax. We 
put java file BuyPolicy into correspondence 
to event Buy Policy, so that this event 
generates events createCoverageMax and 
createCoverageNoLimit and submits them 
to the environment. Protocol machines 
CoverageMax and CoverageNoLimit accept 
these events and create the instances. All 
coverages of the product are found in the 
Product protocol machine and collected in 
an array Instance[] myMaxCoverages. For 
each coverage a creating event is generated 
(for example Event createCoverageMax 
and all attributes are filled in with the 
data. The presented code does not specify 
any implementation; it translates the event 
BuyPolicy to the concepts of protocol ma-
chines CoverageMax and CoverageNoLimit. 
The Modelscope tool finds the java file with 
the same name Buy Policy and executes it, 
so that the stakeholder executes the model 
and tests her requirements.

package Insurance; 

import com.metamaxim.modelscope.callbacks.*; 

public class BuyPolicy extends Event { 

 public void handleEvent() { 

        this.submitToModel(); 

        //Add the associated CoveragesProce-

dures to the Policy 

        Instance myProduct= this= 

getInstance(“Product”); 

        String myProductName=myProduct.

getString(“Product Name”); 

        Instance[] myMaxCoverages = 

        this.getInstance(“Product”) 

selectByRef(“MaxCoverage”, “Product”); 

        for (int i = 0; i < myMaxCoverages.

length; i++) { 

        String myName=myMaxCoverages[i].

getString(“MaxCoverage Name”); 

        int myMax=myMaxCoverages[i]. 

getCurrency(“MaxBalance”); 

             Event createCoverageMax = this 

createEvent(“Create CoverageMax”); 

             createCoverageMax. 

setNewInstance(“CoverageMax”, “Coverage-

Max”); 

              createCoverage-

Max.setInstance(“MaxCoverage”, 

myMaxCoverages[i]); 

              createCoverageMax.

setString(“CoverageMax Name”, myName); 

createCoverageMax.setCurrency(“Balance”, 

myMax); 

               createCoverageMax.submitTo-

Model(); 

} 

        Instance[] myNoLimitCoverages = 

        this.getInstance(“Product”).

selectByRef(“NoLimitCoverage”, “Product”); 

        for (int i = 0; i < myNoLimitCover-

ages.length; i++) { 

        String 

myNoLimit=myNoLimitCoverages[i].

getString(“NoLimitCoverage Name”); 

 

       Event createCoverageNoLimit = this. 

createEvent(“Create CoverageNoLimit”); 

      createCoverageNoLimit.setNewInstance(“

CoverageNoLimit”, “CoverageNoLimit”); 

      createCoverageNoLimit.

setInstance(“NoLimitCoverage”, 

myNoLimitCoverages[i]); 

       createCoverageNoLimit.

setString(“CoverageNoLimit Name”, myNoLim-
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it); 

       createCoverageNoLimit.submitToMod-

el(); 

             } 

         } 

    }

5.  Handling of claims means updating contain-
ers. The given requirements of these updates 
are not precise enough for executable model-
ling. For example, the goal “A Max-claim is 
paid to Max” is ambiguous. The executable 
model demands refinement of this goal 
formulation to a simple algorithm on how 
to calculate the payment and the rest of the 
coverage. This algorithm is presented in 
the state-function of the protocol machines 
CoverageMax:

package Insurance;

import com.metamaxim.modelscope.callbacks.*; 

 

public class CoverageMax extends Behaviour { 

public void 

processPayToMax(Event event, String sub-

script) { 

 

int newBalance=this.getCurrency(“Balance”); 

int newAmount= 

event.getInstance(“Claim”). 

getCurrency(“Amount”); 

 

int newPayment=0; 

    if (newBalance >= newAmount) { 

        newBalance=newBalance-newAmount; 

        newPayment=newAmount; 

     }     else { 

        newPayment=newBalance; 

        newBalance=0; 

            } 

    this.setCurrency(“Balance”, newBalance); 

    this.setCurrency(“PaymentToMax”, newPay-

ment); 

} 

}

We can see that as a result of executable mod-
eling we have refined initial requirements to the 
point that they may be executed. Even our simple 
case shows that the initial goal specification is 
refined because the executable protocol model 
demands more precision to be executed.

DISCUSSION

EXTREME is a New Method for EXecuTable 
Requirements Engineering, Management, and 
Evolution

If the ideas of a collection of methods used 
together produces more knowledge then each 
of combined methods, this collection presents a 
new method.

Our collection of methods combines the ideas 
of goal-oriented methods and protocol modeling.

Goal-oriented modeling methods along suggest 
strategic structuring of wishes of stakeholders as 
goals and refinement of the goals to requirements 
up to structural elements of system implementa-
tion: classes, their attributes and operations. In the 
absence of system implementation, verification of 
the produced specification demands methods of 
model checking. The properties are specified in a 
formal logic. Goal–oriented methods do not give 
instructions for transformation of requirements 
into formal properties. The properties are speci-
fied by an analyst, which is an error prone process. 
Then the state space specified by classes and 
attributes is built and the sequences of operation 
calls are generated to verify the truth of specified 
properties or the false of negations of properties.

The results of model checking need to be 
interpreted to stakeholders who specified goals. 
The interpretation may be misunderstood and 
the feedback of stakeholders may be lost at this 
stage. In this case the knowledge about correspon-
dence between the specifications to the wishes of 
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stakeholders will be fully identified only at the 
implementation stage.

Protocol modeling along allows producing 
executable models of requirements with any pos-
sible decomposition; however, this method does 
not answer the question how the protocol models 
should be built from system requirements. Tracing 
requirements and management of requirements is 
not addressed in protocol modeling.

Business practice needs methods that consider 
requirements engineering, evolution and manage-
ment as parts of one process. Using model-check-
ing techniques in this process (with specification 
of system properties and interpretation of results 
to requirements engineers) is not effective. This is 
like an extra step of translating to model checking 
after every change in requirements and translating 
the results of model checking back to require-
ments. Requirements engineers should be able to 
fulfill the self-validation of their requirements. By 
executing requirements on the protocol model in 
EXTREME, they are able to do this.

EXTREME replaces refinement of goals to the 
specification of classes, attributes, and operations 
with refinement of goals to protocol models. Be-
ing compositional in nature, the protocol models 
contain protocol machines directly corresponding 
to requirements. Protocol models possess the 
property of local reasoning described in section 
3. Local reasoning means that properties of each 
protocol machine are preserved in the behaviour 
of the whole protocol model. That is why building 
and analyzing of large state space of the system by 
model checking may be replaced with execution 
of a limited number of protocol machines collab-
oratively responsible for the tested requirement.

The tested requirements should not be trans-
formed into formal property. Each requirement 
usually describes the sequential steps of a protocol 
machine or update of local storage of a protocol 
machine. This means that a requirement is directly 
visible in one of protocol machines. The execu-
tion of the protocol model in de Modelscope tool 
shows the protocol machines responsible for the 

requirement. The requirements implemented as a 
protocol machine is preserved in the CSP parallel 
composition of protocol machines. The presence 
or absence of a requirement is an additional in-
dication of the correctness of model evolution.

The user and requirements engineer provide 
their feedback as many times as needed by look-
ing at model execution. In such a way EXTREME 
produces the knowledge about the correspondence 
of requirement specification to the wishes of 
stakeholders before the implementation of the 
system and more knowledge is produced than in 
original goal-oriented methods.

The improvement of the requirement engineer-
ing process means

• Producing adequately complete 
requirements.

• Enabling easy management of require-
ments including easy changing.

• Enabling local reasoning on parts of the 
model about the behavior of the whole.

Producing Adequately 
Complete Requirements

Protocol Modelling of requirements results in a 
refined goal tree shown in Figure 2. Contextual 
playing with executable requirements caused 
recognizing tacit requirements.

• We have extended initial requirements with 
uniqueness of instances. For example, any 
Medical Procedure, Medical Procedure 
Group, Product and Person should be 
unique. This concern is specified as a sepa-
rate protocol machine Duplicate Check. 
This protocol machine accompanied with 
the corresponding call-back function is 
included into each of the named protocol 
machines and CSP composed with them.
Duplicate check is a good example of a 

crosscutting concern. Protocol models 
provide the necessary flexibility for 
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presentation of crosscutting concerns 
and other refinements of requirements 
(McNeile,A., Roubtsova E. (2010)).

• We have completed the requirements need-
ed for claim handling by adding containers 
of coverages for each policy and by speci-
fication of updating procedure of those 
containers.

As we can see the ambiguities of the first defi-
nitions of claim handling and product definition 
are resolved by adding new protocol machines and 
CSP composing them with the protocol machines 
representing life cycle of identified objects. In 
fact each protocol machine is a presentation of a 
requirement that can be tested. If a requirement 
cannot be presented as a protocol machine it has 
to be refined. An executable protocol model if re-
quirements indicate their adequate completeness.

Enabling Easy Management 
of Requirements Including 
Easy Changing

Goals have a clear tree structure and combining 
of them with protocol models puts protocol ma-
chines as leaves of the goal tree. The tree structure 
is good for search of goals and corresponding 
protocol machines. It is easy to delete an exist-
ing goal (protocol machine) and add a new goal 
(protocol machine).

The only problem with the trees is the ac-
commodation of crosscutting concerns. In a tree 
structure, the crosscutting requirement and the 
corresponding protocol machine will inevitable 
appear several times.

In order to solve this inconvenience, the name 
of the protocol machine in the tree may contain 
a link to the place of the metadata specifying 
this protocol machine in the textual document. 
Modification of a requirement (goal) will result 
in search of the corresponding protocol machine 
in order to correct it.

In other methods combining of goal and 
operation models (Respect-IT (2007), Van, H.T. 
et.al. (2004)), refinement of requirements usually 
results in remodeling. The crosscutting concerns 
cause a lot of error prone remodeling activities. 
This is explained by the composition techniques 
used in operation models, namely, the sequential 
composition and the hieratical composition. If a 
concern is added, the sequences have to destroyed 
and built again. The change of the hierarchy usu-
ally causes complete remodeling. Example of 
these problems in conventional operation models 
are shown in McNeile,A., Roubtsova.E. (2007).

ENABLING LOCAL REASONING 
ON PARTS OF THE MODEL ABOUT 
THE BEHAVIOR OF THE WHOLE

EXTREME inherits the property of local reason-
ing from Protocol Modelling enabling also direct 
relations with the requirements for local reasoning.

Let us take a requirement “A submitted claim 
is sorted as: Not Covered, Max Claim No Limit 
Claim.”

This requirement corresponds to the protocol 
machine Claim Sorting. We see that this machine 
has the specified states: Not Covered, Max, No 
Limit. Claim Sorting is included into protocol 
machine Claim.

The state of the protocol machine Claim Sort-
ing is derived when the protocol machine Claim 
accepts event Submit Claim. Event Submit Claim 
contains information about Medical Procedure. If 
this Medical Procedure has been included into a 
group for Max Coverage, then the claim should be 
sorted as Max Claim. The behaviour of Claim and 
Claim Sorting is tested locally without analysis 
of the complete state space of the model. The 
proposed tests are the Submit Claim eventwith a 
medical procedure from the group Max Coverage 
and the check if it is sorted as Max Claim.
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FUTURE RESEARCH DIRECTIONS

Modeling of More Abstract 
Business Concepts

Controllable development of business is impos-
sible without monitoring of its state, capacities, 
calculating key performance indicators and mak-
ing decisions for correct and timely investment. 
Such monitoring happens both at the level of en-
terprises, enterprise departments and educational 
institutions, but also at the level of ministries and 
government. The major problem with monitoring 
and decision support is different interpretation of 
state, capacities, and key performance indicators. 
This problem has an objective reason as even 
businesses of the same branch have different 
variations. Ambiguity and different understanding 
of state, capacities and key performance indica-
tors cause problems for management in making 
right decisions and for employees in directing 
their efforts. Cloud technologies and mobile 
technologies introduce new indicators that need 
to be unambiguously understood.

Our preliminary studies show that conceptual 
models of business capacities and KPIs lead to 

unambiguous definitions. EXTREME allows for 
building conceptual models of abstract business 
concepts and key performance indicators using 
ideas of goal-oriented approaches and protocol 
modelling. Analysis of KPIs models may result 
in useful standardisation of operational KPIs. 
The classified KPIs and business capacities will 
speed up solution of many business intelligence 
tasks, lead to easy building of business analyt-
ics into information systems and eventually will 
result in better decision support for business and 
better decisions.

At the moment performance indicators are not 
included into system models, but maintaining of 
high performance is always a goal of a system. 
The compositional nature of Protocol Models used 
in our method to make requirements operational 
gives the opportunity to raise the level of abstrac-
tion in models and relate many complex business 
concepts to behavioral models. Such concepts as 
business capabilities, Key Performance Indica-
tors (KPIs) and motivation models may extend 
behavior models.

For example, let us see the monitoring of KPIs 
as a new goal “The numbers of submitted and paid 
claims per year are calculated.”

Figure 5. KPI: Submitted and paid claims per year
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These KPIs are conceptually related to the 
concept Claim, its attribute Submission Date, the 
time concept Now and two values of the concept 
State, namely the state value paidToMax and the 
state value paidNoLimit. The conceptual model 
is shown in Figure 5. The claims that have these 
values of their State concept are paid.

In order to calculate KPI1: Number of submit-
ted claims, the date oneYearAgo from the value 
of Now is calculated. Then the claim instances 
with the value of the attribute Submission Date 
after oneYearAgo are found and the KPI1: Num-
berOfClaims is calculated (see function getNum-
berOfClaims()).

In order to calculate KPI2:Number of paid 
claims, the claims situated in the state paidToMax 
or paidNoLimitthat submitted after the Submission 
Date are found and their number is calculated 
(function getNumberOfPaidClaims()).

The ability to derive states makes it possible to 
calculate KPIs in Protocol Models. The metacode 
of the Protocol Model and the corresponding java 
code calculating the number of claim instances 
is shown below.

OBJECT CounterNumberOfClaims

NAME Name

ATTRIBUTES Name: String, !NumberOfClaims:Integer, 

!NumberOfPaidClaims:Integer

STATES created

TRANSITIONS @new*GetNumberOfClaims=created

EVENT GetNumberOfClaims

ATTRIBUTES CounterNumberOfClaims:CounterNumberOf

Claims, Name:String

#-------------------------------------------------------------------------

package Insurance;

import com.metamaxim.modelscope.callbacks.*; 

import java.util.*; 

 

public class CounterNumberOfClaims extends 

Behaviour { 

    public int getNumberOfClaims() {

             int NumberOfClaims=0;

            Date d = new Date(); 

            Calendar cal = Calendar.getIn-

stance(); 

     cal.add(Calendar.YEAR, -1); 

     Date oneYearAgo = cal.getTime(); 

     Instance[] existingIns =  

selectInState(“Claim”, “@any”); 

            for (int i = 0; i < existingIns.

length; i++) { 

    Date SD=existingIns[i].

getDate(“SubmissionDate”); 

            if (SD.compareTo(oneYearAgo)>0) 

            NumberOfClaims=NumberOfClaims+1; 

    } 

            return NumberOfClaims; 

    } 

    public int getNumberOfPaidClaims() {

        int NumberOfPaidClaims=0; 

        Date d = new Date(); 

        Calendar cal = Calendar.getIn-

stance(); 

     cal.add(Calendar.YEAR, -1); 

     Date oneYearAgo = cal.getTime(); 

      Instance[] PaidToMaxIns = 

selectInState(“Claim”, “paidToMax”); 

           for (int i = 0; i < PaidToMaxIns.

length; i++) { 

      Date SD=PaidToMaxIns[i].

getDate(“SubmissionDate”); 

           if (SD.compareTo(oneYearAgo)>0) 

           NumberOfPaidClaims=NumberOfPaidC

laims+1; 

    } 

    Instance[] PaidNoLimitIns = 

selectInState(“Claim”, “paidNoLimit”); 

            for (int i = 0; i < PaidNoLimi-

tIns.length; i++) { 

    Date SD=PaidNoLimitIns[i].

getDate(“SubmissionDate”); 

         if (SD.compareTo(oneYearAgo)>0) 

         NumberOfPaidClaims=NumberOfPaidCla

ims+1;
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    } 

         return NumberOfPaidClaims; 

    } 

    }

It is possible that during the modelling and 
execution the stakeholder will decide that the date 
of KPI monitoring is fixed and this concept Fixed 
Monitoring Date will replace concept Now in the 
conceptual model.

The discovery of patterns of protocol models of 
different KPIs and other abstract business concepts 
is one of directions for future work.

Tool Support for Traceability 
of Requirements in Models

The goals and requirements are naturally kept in a 
tree structure. From this tree structure is possible 
to generate a textual document for metadata of 
protocol machines. The goals and requirements 
may be presented in this document as comments 
following the hierarchy of requirements in the goals 
tree. The meta-code of each protocol machine may 
be written then under own requirements as we have 
presented in the appendix. In case of crosscutting 
concerns, the meta-code of a protocol machine may 
have a link to the requirement in the tree structure 
and the description of the relevant requirements 
from the branch of the goal tree may be generated 
in its comments when necessary. This means that 
the problem of traceability of requirements in 
protocol models will be solved. The traceability 
of requirements in protocol models needs to be 
supported with a tool in near future.

CONCLUSION

The correspondence between the strategic and the 
operational levels of a business is a success factor 
of the business. In this chapter, we have presented 
a new method EXTREME that combines the ideas 
of thegoal models at the strategic level with the 

executable protocol models at the operational level. 
The uniqueness of the proposed combination is in 
synchronous semantics both at the strategic and 
the executable levels that easies both the goal 
refinement and the executable modeling.

The name of the method EXTREME can be 
associated with Extreme Programming (Cockburn, 
2001b). The associating is not wrong as the ideas 
of Extreme Programming to improve a software 
project on the basis of five essential principles; 
communication, simplicity, feedback, respect, and 
courage are present in the method EXTREME. 
The difference is that the EXTREME can be also 
used for modeling of businesses, not necessarily 
for programming software, and the five principles 
are used already at the stage of requirements 
engineering before the implementation phase.

The extended CSP parallel composition used 
in Protocol Modelling gives extra decomposition 
flexibility and ability to reason locally avoiding 
the state space explosion at the stage of analysis.

The goal-orientation brings the order and 
simplicity into decomposition, testing and evolu-
tion. New goals are refined as requirements and 
corresponding new protocol machines and CSP 
composed with the rest of the model. The existing 
model parts are not changed and preserve their 
behaviour in the growing model. Synchronous 
nature of protocol models does not add any states 
that cannot be explained by goals and their refine-
ment. Therefore the execution of models can be 
easily controlled from the goal perspective by the 
stakeholders.

The method has been tested for insurance prod-
ucts in Oracle Nederland (Verheul & Roubtsova, 
2011). Currently there is a running experiment in 
two companies that want to improve requirements 
management of product releases by application of 
the EXTRIME method.
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KEY TERMS AND DEFINITIONS

Adequate Completeness of Requirements: 
Requirements are adequately complete if all 
specified requirements are met by an executable 
system model and the model can be used to reason 
about the system.

CSP Parallel Composition: Is an algorithm 
of constructing sequences of events accepted by 
the abstracting from data. Processes P and Q 
must both be able to per form event 
before that event can occur. Processes communi-
cate via synchronous message passing. 
( ) | [{ }] | ( )a P a a Q→ → .

CSP Parallel Composition Extended for 
Machines with Data: Is an algorithm of construct-
ing sequences of events accepted by the modeled 
system including data storages and state spaces.

Event: A recognized happening in an environ-
ment that can be expressed as a data structure. One 
element of this data structure is an event type.

Goal: A general name of a piece of system 
functionality; a description of a system state be-
ing a result of an execution of the piece of system 
functionality.

Goal Tree: A tree the root of which is a system, 
the next nodes is the system goals; the goals are 
refined to requirements.

Protocol Machine: Is a state-transition con-
struction with data storage that defines ability of 
a system to accept events from environment. If a 
pre-event or a post-event constraint on the data 
storage is not met then the machine refuses the 
event.

Requirement: A description of system reac-
tions on related events.
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APPENDIX

Meta Code of a Protocol Model of an Insurance Business

MODEL Insurance
#-------------------------------------------------
#Product is composed.
#A product manager created, unique medical procedure. Each medical procedure c is added to only one
#group of medical procedures.

OBJECT Medical Procedure
     NAME Name 
     INCLUDES Duplicate Check 
          ATTRIBUTES Name: String, MPGroup:MPGroup 
          STATES created, added 
          TRANSITIONS          @new*Create Medical Procedure=created, 
                               created*AddMPintoGroup=added, 
                               added*Submit Claim=added, 
 
BEHAVIOUR !Duplicate Check 
     STATES unique, duplicate 
          TRANSITIONS @any*Create =unique

#A product manager created a unique group of medical procedures, Each group is added to only #one
#Coverage (MaxCoverage or No Limit coverage.

OBJECT MPGroup 
     NAME Name 
     INCLUDES Duplicate Check 
     ATTRIBUTES 
          Name: String, 
          !CurrentState:String, 
          MaxCoverage:MaxCoverage, 
          NoLimitCoverage:NoLimitCoverage 
          STATES created, coveredMax, 
          coveredNoLimit 
     TRANSITIONS @new*Create MPGroup=created, 
                 created*AddMPintoGroup=created, 
                 reated*!AddGroupToNoLimitCoverage=coveredNoLimit, 
                 created*!AddGroupToMaxCoverage= coveredMax, 
                 coveredMax*ChangeMPGroup=created, 
                 coveredNoLimit*ChangeMPGroup=created,
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#A product manager created a Max Coverage with the size of Max. The coverage is added to a #Product.

OBJECT MaxCoverage 
     NAME Name 
     ATTRIBUTES 
          Name: String, 
          MaxBalance:Currency, 
          Product:Product, 
          Product Name:String 
          STATES created, 
TRANSITIONS @new*Create MaxCoverage =created, 
                  created*AddGroupToMaxCoverage= created, 
                  created*Create CoverageMax= created,

#A product manager created a No Limit Coverage. The coverage is added to a Product.

OBJECT NoLimitCoverage 
NAME Name 
     ATTRIBUTES 
     Name: String, 
     Product:Product, 
     Product Name:String 
     STATES created, 
     TRANSITIONS @new*Create NoLimitCoverage =created, 
                 created*AddGroupToNoLimitCoverage= created, 
                 created*Create CoverageNoLimit= created,

#A product manager created a product and offers it to the market.

OBJECT Product 
     NAME Name 
     INCLUDES Duplicate Check 
     ATTRIBUTES Name:String 
     STATES created, offered 
     TRANSITIONS @new*Create Product=created, 
                 created* Create MaxCoverage=created, 
                 created*Create NoLimitCoverage=created, 
                 created*AddGroupToMaxCoverage=created, 
                 created*AddGroupToNoLimitCoverage=created, 
                 created*Offer Product=offered, 
                 offered*Buy Policy=offered 
 
EVENT Create MaxCoverage 
ATTRIBUTES   MaxCoverage:MaxCoverage, 
                  Name: String, 
                  MaxBalance:Currency, 
                  Product:Product 
EVENT Create NoLimitCoverage 
ATTRIBUTES   NoLimitCoverage:NoLimitCoverage, 
               Name:String, 
               Product:Product 
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EVENT AddMPintoGroup 
ATTRIBUTES   Medical Procedure: Medical Procedure, 
               MPGroup:MPGroup 
EVENT Create Medical Procedure 
ATTRIBUTES   Medical Procedure: Medical Procedure, 
               Name:String 
EVENT Create MPGroup 
ATTRIBUTES     Name: String, MPGroup:MPGroup 
EVENT AddGroupToNoLimitCoverage 
ATTRIBUTES   MPGroup:MPGroup, 
             NoLimitCoverage:NoLimitCoverage, 
             Product:Product 
EVENT AddGroupToMaxCoverage 
ATTRIBUTES   MPGroup:MPGroup, 
               MaxCoverage:MaxCoverage, 
               Product:Product 
EVENT ChangeMPGroup 
ATTRIBUTES    MPGroup:MPGroup 
 
EVENT Create Product 
ATTRIBUTES    Product:Product, 
                Name:String 
 
EVENT Offer Product 
ATTRIBUTES    Product:Product 
 
GENERIC Create 
MATCHES Create Medical Procedure,Create Product,Create MPGroup

#A policy is bought by a registered customer.
#A Customer is registered.

OBJECT Person 
NAME Name 
INCLUDES Duplicate Check 
       ATTRIBUTES 
       Name: String,Policy: Policy 
       STATES created 
       TRANSITIONS @new*Create Person=created, 
                   created*Buy Policy=created,

#A registered customer bought a policy.

OBJECT Policy 

     NAME Name 

     INCLUDES Duplicate Check 

     ATTRIBUTES Name: String, Product:Product, Person:Person 

          STATES created, deleted, offered 

     TRANSITIONS @new*Buy Policy=created, 

                 created*Submit Claim=created, 

                   created*Create CoverageMax=created, 

                      created*Create CoverageNoLimit=created
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#The handler for each Coverage of the policy are created.
#The initial Balance for each Coverage Max is equal to the Max in Max Balance assigned to #attributes
#of Max Coverage.

OBJECT CoverageMax 

NAME CoverageMax Name 

    ATTRIBUTES CoverageMax Name: String,MaxCoverage:MaxCoverage, 

       Balance:Currency PaymentToMax:Currency, Policy:Policy 

              STATES created 

              TRANSITIONS @new*Create CoverageMax =created, 

                          created*!PayToMax=created, 

 

OBJECT CoverageNoLimit 

NAME CoverageNoLimit Name 

     ATTRIBUTES CoverageNoLimit Name:String,PaymentNoLimit:Currency, 

Policy:Policy 

              STATES created 

        TRANSITIONS @new*Create CoverageNoLimit=created, 

                    created*!PayNoLimit=created, 

 

EVENT !Buy Policy 

ATTRIBUTES Policy:Policy, Policy Number:String, Person:Person, Product:Product 

#-----------------------------------------------------------------------------

#A Claim of a client with a bought policy is handled.
#A registered customer with the bought policy submitted a claim.

OBJECT Claim 

     NAME Name 

     INCLUDES Duplicate Check,Sorting Claim, 

     ATTRIBUTES Name: String, Policy:Policy, Medical Procedure: Medical 

Procedure, 

                Amount:Currency, SubmissionDate:Date, 

                CoverageMax:CoverageMax, CoverageNoLimit:CoverageNoLimit, 

     STATES created, paidToMax, paidNoLimit 

     TRANSITIONS @new*Submit Claim=created, 

                 created*PayToMax=paidToMax, 

                 created*PayNoLimit=paidNoLimit
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#A submitted claim is sorted as:
#Not Covered,
#Max Claim
#No Limit Claim
 #A Max Claim is paid as follows:
 #If the Coverage Max. Balance=0 I, then the Max Claim is refused.
 #If the Coverage Max. Balance>0 then:
 #If Max Claim. Amount <= Coverage Max. Balance, the claim is paid;
 #If Max Claim. Amount >Coverage Max. Balance, then (
 #Coverage Max. Balance- Max Claim. Amount) is paid and
 #Coverage Max. Balance=0.

 #A Not Covered claims is refused.
 #A No Limit claim is always paid.

BEHAVIOUR !Sorting Claim 

           ATTRIBUTES 

     STATES Max, NoLimit, NotCovered 

     TRANSITIONS Max*PayToMax=@any, 

                 NoLimit*PayNoLimit=@any 

 

EVENT PayToMax 

ATTRIBUTES CoverageMax:CoverageMax, Claim: Claim 

 

EVENT PayNoLimit 

ATTRIBUTES CoverageNoLimit:CoverageNoLimit, Claim:Claim

EVENT Create CoverageMax 

ATTRIBUTES CoverageMax:CoverageMax, Policy:Policy, CoverageMax Name:String, 

Balance:Currency, MaxCoverage:MaxCoverage 

 

EVENT Create CoverageNoLimit 

ATTRIBUTES CoverageNoLimit:CoverageNoLimit, Policy: Policy, CoverageNoLimit 

Name: String, NoLimitCoverage:NoLimitCoverage 

 

EVENT Submit Claim 

ATTRIBUTES Claim:Claim, Policy:Policy, Claim Number:String, Medical Procedure: 

Medical Procedure, Amount:Currency, SubmissionDate:Date 

 

EVENT Create Person 

ATTRIBUTES Person:Person, Name: String 

#----------------------------------------------------------------------------- 
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