
KPIs and Their Properties Defined

with the EXTREME Method

Ella Roubtsova1 and Vaughan Michell2

1 Open University of the Netherlands. 6401DL, Valkenburgerweg 177
Heerlen, The Netherlands

2 Henley Business School, University of Reading,
Whiteknight, Reading, RG6 6UD, UK

Abstract. Key Performance Indicators (KPIs) are the main instru-
ments of Business Performance Management. KPIs are the measures
that are translated to both the strategy and the business process. These
measures are often designed for an industry sector with the assumptions
about business processes in organizations. However, the assumptions can
be too incomplete to guarantee the required properties of KPIs. This
raises the need to validate the properties of KPIs prior to their applica-
tion to performance measurement.

This paper applies the method called EXecutable Requirements En-
gineering Management and Evolution (EXTREME) for validation of the
KPI definitions. EXTREME semantically relates the goal modeling, con-
ceptual modeling and protocol modeling techniques into one methodol-
ogy. The synchronous composition built into protocol modeling enables
traceability of goals in protocol models and constructive definitions of a
KPI. The application of the method clarifies the meaning of KPI prop-
erties and procedures of their assessment and validation.

1 Introduction

Key Performance Indicators are cumulative measures of system achievements
during a given time period. The achievements and the corresponding KPIs are
related to system goals. The importance of the correct design of KPIs is clarified
by their twofold nature. Namely, KPIs are calculated from the operational data,
but they are interpreted at the strategic or tactical levels and often used by
authorities to make decisions about the payment for the fulfilled work.

KPIs are usually designed for an industry sector with the assumptions made
about the business processes in organizations. However, the business process in
individual organizations may deviate from the business process used for the KPI
definition. Moreover, the values of KPIs are often derived from the information
about several businesses of different sectors. Incomplete assumptions about the
business processes used for KPI definitions may result in different interpretation
of KPIs. The organizations may become incompatible with respect to KPIs.
Incomplete assumptions may leave the room for manipulation of KPI values to
achieve better report numbers. The management science indicate this situation
as ”unreliable” and ”plan oriented” KPIs [8].

B. Shishkov (Ed.): BMSD 2013, LNBIP 173, pp. 128–149, 2014.
c© Springer International Publishing Switzerland 2014

KPIs and Their Properties Defined with the EXTREME Method 129

Therefore, the definitions of KPIs and the completeness of assumptions about
the underling processes should be validated. Because of the above mentioned
twofold nature of KPIs, validation of their definitions demands both the oper-
ational models and the strategic models. The operational models are the ex-
ecutable process models for collecting the cumulative measures during model
execution. The strategic models are the goal models for reasoning on KPI prop-
erties. The approach for validation of KPI definitions should use the related
semantics for the goal models and the process models. The approach should en-
able building simple and easy changeable executable models. The changeability
is needed to correct the assumptions about the business process used for KPI
definitions.

In this paper, we propose to use the method called EXecutable Requirements
Engineering Management and Evolution (EXTREME) [17] for validation of KPI
definitions.

EXTREME is a combination of goal modeling, conceptual modeling and pro-
tocol modeling [17]. The synchronous composition built into protocol modeling
enables the traceability of goals and concepts in the components of the proto-
col model and the interpretation of KPIs both in terms of goals and in terms
of processes. The execution of the protocol model with the upturn and down-
grade business data is used to validate whether the KPIs indicate the upturn
and downgrade tendency, and whether the values of KPIs can be manipulated.

We build our work upon the existing methods [16,19,9] presented in Section 2
and use the conceptual basis of other methods. We have found that none of these
methods can support the easy changeable executable process models needed for
validation of properties of KPIs. We assume that the main reason for that is
the semantic incompatibility of the goal modelling approaches and conventional
process modelling approaches indicated in [9].

Section 3 describes the EXTREME method that exploits the semantic com-
patibility of the goal modelling and protocol modelling approaches. The seman-
tics of the protocol modelling approach is described with the emphasis on the
model execution that is needed for definition of KPIs.

Section 4 presents the formalization of the definition of KPIs from the protocol
model point of view and interpretation of properties of KPIs in terms of this
definition.

Section 5 describes the case for validation of KPIs presented in the program
”Improving Access to Psychological Therapies (IAPT)” [5]. It reports the results
of application the EXTREME method for the case. A triple of the goal, concep-
tual and executable protocol models is built on the basis of the IAPT document.
We discuss the results of validation of properties of KPIs.

Section 6 presents conclusions and future work.

2 Related Work

2.1 Approaches for KPI Modelling

– A Performance Indicator (PI) is formalized in [16] as a concept with a num-
ber of attributes: Name, Definition, Type (continuous or discrete), Time

130 E. Roubtsova and V. Michell

Frame, Scale, Min Value, Max Value, Source (Law, Company policy, Mis-
sion Statement), Owner (”the performance of which role or agent does it
measure”), Threshold (”the cut-off value separating changes in the value of
the performance indicator considered small and changes considered big”),
Hardness (”a performance indicator can be soft or hard where soft means
not directly measurable, qualitative, e.g. customers satisfaction”) [16].
In order to find the values of the attributes, the authors rely on documents,
expert knowledge and previous conceptual models. They indicate that it
is not easy to find the information about all proposed attributes in the
documentation.
The second concept used for the PI formalization is the performance indica-
tor expression. It is “a mathematical statement over a performance indica-
tor evaluated to a numerical, qualitative or Boolean value for a time point,
for the organization, unit or agent.” [16]. For example, Response T ime ≤
48hours. The authors suggest to specify the required values of PIs as con-
straints estimated by experts with respect to a goal. The relations between
different PIs are also modelled using the performance indicator expressions.
Let us notice that this formalization does not answer the question how a
KPI can be calculated. The authors claim that they need to integrate the
performance view with the process, organization and agent-oriented views
of the real organizations. However, there is no information about the pro-
cess semantics used for modelling and no evidence about validation of the
PIs using processes. The authors do not involve the process view in the for-
malization of an indicator. In any case, the authors write about the process
views of real organizations, whereas it is often needed to validate the PIs
before their implementation in organizations.

– MetricM [19] is another method formalising KPIs. It “is built upon and
extends an enterprise modeling approach to benefit from the reuse of model-
ing concepts and provide relevant organizational context, including business
objectives, organizational roles and responsibilities.”
The modelling language MetricML used in MetricM “adds essential con-
cepts to modeling performance indicators...” The concept Indicator is used
to present a KPI. The MetricML Indicator metatype is used for modeling
its relations to other indicator types, to reference object types representing
organizational context and to goal types.
An alternative “attribute” approach, used by MetricM, conceptualizes per-
formance indicator as a (meta-) attribute of metatypes: e.g. “average through-
put time” of a business process type or “average number of employees” of an
organizational unit type. We partially use these alternative approach for our
formalization in the next section. However, MetricM uses declarative models
of performance indicators. The models of underlying processes, needed for
execution and validation of KPI properties, are not used in MetricM.

The general tendency of two approaches, presented above, is to postpone the
validation of the KPI properties to the moment when the process model of the
organization is ready.

KPIs and Their Properties Defined with the EXTREME Method 131

In this paper, we claim that the early validation of KPI properties on a busi-
ness process, used for the KPI definition, may eliminate incompleteness of as-
sumptions about the business process and prevent application of unreliable KPIs.

2.2 Goal Modelling Approaches and Modelling of KPIs

All existing approaches agree that the KPIs relate the system goals and pro-
cesses. However, the process models are not used for validation of KPIs. Let us
look what are the reasons for that.

There are goal oriented approaches, such Knowledge Acquisition in autO-
mated Specification (KAOS) [3], the User Requirements Notation (URN) [6]
and i* modelling framework [20]. These approaches relate goals, business con-
cepts and business processes. KAOS applies state machines to model behaviour
of concepts. The URN applies a scenario modelling notation called Use Case
Maps (UCM) [2]. Both approaches experience problems caused by the semantic
incompatibility between the goal models and process models.

Letier at al [9] explain that the synchronous temporal logic used for goal
modelling is interpreted over sequences of states observed at a fixed time rate. On
the other hand, the conventional process models (UML state machines, use case
maps, UML activity diagrams [14], Coloured Petri Nets [7]) use asynchronous
temporal logics that are interpreted over sequences of states observed after each
occurrence of an event. Thus, the temporal logic operators have very different
meanings in synchronous and asynchronous temporal logics.

The process models built in asynchronous approaches accept the recognised
messages, events or operation calls even if the state of the model is not appro-
priate to handle them. In such states, the messages, events or operation calls
are kept in queues, bags or buffers to be handled in an appropriate state of the
model. As a result, the behaviour model contains many intermediate states that
are not justified by goals and declarative requirements. Analysis of intermediate
states may be relevant for validation of asynchronous implementation. However,
the goals and the KPIs are defined at a different level of abstraction, namely at
the tactical and strategic level, i.e. at the level of observable states of the system.

Letier at al. [9] admit that in order to be semantically equivalent to the
synchronous KAOS models, the derived event-based behaviour models need to
refer explicitly to timing events. In other words, the event-based models should
have elements of synchronization.

3 EXTREME: Goal Modelling with Protocol Modelling

Protocol Modelling [12] is an event-based modelling approach with the ele-
ments of synchronization needed for relating the goal and process models. The
EXTREME [17] method exploits the semantic compatibility of goal and protocol
models in order to simplify executable requirements engineering.

The method combines goal modelling, conceptual modelling and protocol
modelling into one method to collect all the information needed for reason-
ing. The goal modelling and conceptual modelling are similar to the KAOS

132 E. Roubtsova and V. Michell

Protocol Machine

Y X

A

B

D Protocol Machine

Y X

A

B

D

Protocol Machine

Y X

A

B

D

Y X

A

B

D

Protocol Machine

Y X

A
B

D

Concept

Concept

Concept

Requirements
Requirements

Requirements
Requirements

Goal: Produce
Goal: Serve

Goal: Secure
Goal: Green

Fig. 1. The EXTREME method

method [3]. These steps are shown in Figure 1 as boxes named Goal, Require-
ment and Concept. Instead of the UML state machines and activity diagrams
used by KAOS, EXTREME models the concept’s behaviour as Protocol Ma-
chines (Figure 1) composed into a Protocol Models. The Protocol Model is exe-
cuted using the Modelcope tool [11]. It is shown in Figure 1 as a screen for the
user interface. The results of the execution are interpreted in terms of goals and
requirements. The interpretation is indicated by the blue arrows.

Goals and concepts are modelled in the declarative way as snapshots of de-
sired system behaviour. Protocol models use a form of synchronous CSP-parallel
composition extended with data. They model only the quiescent states of the
system that can be easily compared with the states specified for requirements
and goals. The goal models and protocol models are semantically coherent. All
states of protocol models can be interpreted in the goal semantics. This eases rea-
soning on models in terms of goals, goal refinement and identification of missing
requirements [17].

Although there were many applications of the synchronous CSP parallel com-
position operator in the architecture description languages [1] and in program-
ming languages [13], only after the extension of this operator for machines with
data, made by A.McNeile [12], the operator became practical for business system
modelling. The Protocol Modelling proposed in [12] enables coping with com-
plexity of business modelling because the synchronous semantics decreases the
data space of models. The process modelling with synchronous semantics solves
the semantic mismatch between goal models and process models.

KPIs and Their Properties Defined with the EXTREME Method 133

3.1 Protocol Models and Their Execution

Protocol Machine.
A building block of a protocol model is a protocol machine:

PM = (E,S0, S,A, T), where

– E = {ei}, (i = 1, ..., I ; i, I ∈ N) is an alphabet of event types ei, i.e. a non-empty
finite set of recognized event types coming from the environment. An event type
is a tuple of event attributes of different types: ei = (Aei

1 , ..., Aei
h); h ∈ N. An

instance of an event carries data. These data are used to update local storages
of protocol machines. An attribute of type Date may be used to carry the time
moment of event acceptance.

– S0 is the initial state;
– S = {sj}, (j = 1, ..., J ; j, J ∈ N) is a non-empty finite set of states.
– A = {ak}, (k = 1, ..., K; k,K ∈ N) is a finite set of attributes of different types.

The set can be empty.
– T = {tm}, (m = 1, ...,M ; m,M ∈ N) is a finite set of transitions.

tm = (sx, e, sy), sx, sy ∈ S, e ∈ E. The set can be empty. The values of attributes
are updated only as a result of a transition, i.e. as a result of event acceptance.

Synchronous composition.
In the initial state, a protocol model PM is a CSP parallel composition of

protocol machines each of which presents a protocol machine type is state new.
Initially, there are only the machine types serving as patterns for creating in-
stances of protocol machines.

The instances are created by acceptance of events.
At any state, a system model PM is a CSP parallel composition of finite set

of instances of protocol machines. There are multiple instances of each protocol
machine type.

n n

PM = ‖PMi = ‖(EPMi , SPMi
0 , SPMi , APMi , TPMi) = (E,S0, S,A, T), n ∈ N.

i = 1 i = 1

A Protocol Model PM remains a protocol machine, the set of states of which is
the Cartesian product of states of all composed protocol machines [12]:

–
n

E =
⋃

EPMi is the set of events;
i = 1

–

n

S0 =
⋃

SPMi
0 is the initial state;

i = 1

–
n

S =
∏

SPMi is the set of states;
i = 1

–
n

A =
⋃

APMi is the set of attributes.
i = 1

134 E. Roubtsova and V. Michell

The set of transitions T of the protocol model is defined by the rules of the CSP
parallel composition [4]. The rules synchronise transitions TPMi of protocol ma-
chines. Namely, a Protocol Model handles only one event at a time. An event
can be accepted only if all protocol machines having this event in their alphabets
are in the state where they can accept this event. Otherwise the event is refused.

System Model Execution.
An execution of a protocol model of a system is a sequence of transitions.

Processing of an accepted event is instantaneous: it does not take any time. A
time moment of event processing may be assigned to the event and saved as
a protocol machine attribute. The time moment of the event, that creates a
protocol machine presenting a business object, is often useful for calculation of
KPIs.

The initial state of an execution may contain any set of instances of protocol
machines. At any moment, each protocol machine is situated in one of its states
and its attributes have values of their types defined by the history of accepted
events. Any state of any execution is quiescent, i.e. it does not change without
an acceptance of a new event.

Dependent Protocol Machines. Derived states.
”Two machines having elements of their alphabets in common is not a source

of dependency between them” [12]. The dependency means that one protocol
machine needs to read the state of another machine to calculate its own state
including the attributes. In any quiescent state, a function of this state can be
calculated resulting in the extending of the state space of the protocol machine.
The state space is extended by the state space of the dependent machines.

Protocol machines can read the state of each other, but cannot change it. This
ability of protocol machines to read the state of each other will be used in the
next section for the KPI modelling and calculation.

Observational Consistency.
As the CSP composition is applied to all instances of protocol machines in

the executable model, it gives to the models the property called observational
consistency [10]. This property means that a protocol machine may be added
to and deleted from the model or locally changed. The trace behaviour of other
protocol machines is not affected by the behaviour of added, deleted or modified
protocol machines [10].

4 Definition of KPIs and Their Properties in EXTREME

We use the semantics of a protocol model (section 3.1) to give a constructive
definition of a KPI. The definition should specify how a KPI can be derived from
a protocol model.

KPIs and Their Properties Defined with the EXTREME Method 135

Definition 1. Let a system be presented as a protocol model PM(section 3.1)

n n

PM = ‖PMi, (n ∈ N) = ‖(EPMi , SPMi
0 , SPMi , APMi , TPMi).

i = 1 i = 1

A KPI is a cumulative function of the cardinality of a set of selected business ob-
jects (presented by protocolmachines) and the values of their attributes.The selected
business objects give the value true to the selection predicate ψ(APMj , t, I, VA).
The selection predicate compares the state and attribute values of each protocol ma-
chine with the border values of attributes VA, the moment of selection t and the time
interval I.

KPI = f(
∣
∣
∣
⋃

PMj

∣
∣
∣ ,
⋃

APMj), where

PMj : (ψ(APMj , t, I, VA) = true);

(0 ≤
∣
∣
∣
⋃

PMj

∣
∣
∣ ≤ n).

An algorithm for calculation of a KPI includes

– a predicate ψ(APMi , t, I, VA) for the selection of a number of business objects
(presented as protocol machines) using the time of calculation t, time interval
I and a set of given border values of object attributes VA;

– a cycle for selection and counting the number of business objects presenting
the state of the model that meet the true value of selection predicate;

– a KPI calculation formula which arguments are the number of selected busi-
ness objects and the cumulative variables depending on the attributes of se-
lected business objects.

The constructive definition of a KPI clarifies the definitions of its properties.
We have chosen a set of properties proposed in [8,15] to formalise them on the
basis of our definition and the system protocol model.

1. The first property demands that a KPI should be in a quantifiable form.
Quantification is an act of selection and counting. Our definition of a KPI
shows that selection and counting of instances of business objects (protocol
machines) of a particular sort is the way of quantification. The result of
selection and counting is used as an argument of the function for calculation
of a KPI or for the access to the attribute values of selected objects.

2. The second property says: A KPI needs to be sensitive to changes.
This property is about the design of the for a KPI calculation.
Our model shows that the argument of the function can fall into two cat-
egories: a number of business objects or a variable that depends on values
of attributes of the group of selected objects. The changes of the sensed
elements in the model should cause the corresponding changes of the KPI.
The sensitivity is the minimum magnitude of the change of the sensed ele-
ment of the model, required to produce a noticeable value of a KPI.
Constructing a KPIs function as a ratio or a cumulative function may affect
the sensitivity.

136 E. Roubtsova and V. Michell

3. The third desired property states that: A KPI should be linear. This simpli-
fies the decision making.
Our definition shows the possible arguments of the KPI formula. If the sensed
argument in the model has been identified, it is the matter of the function
choice to make the KPI function linear for this argument.

4. The fourth property is: A KPI should be semantically reliable.
From the modelling perspective, we measure the semantic reliability of a KPI
by the number of additional assumptions that need to be made in order to
derive the KPI value. If the set of additional assumptions is empty, the KPI
is semantically reliable. The next section presents an example of reliable and
unreliable KPIs.

5. The fifth property relates the KPIs with goals of the system:
A KPI should be oriented to improvement, not to conformance to plans.
For validation of this property on a model, the improvement of the system
should be defined from the definition of system goals. The improvement
should be related to changes of a KPI in sequential time intervals. In order to
test the changes of a KPI, several scenarios need to be executed and populate
the model with objects. The model of the system and the system itself should
guarantee that the arguments of the KPI formulas are objectively changed
by the business process and cannot be manipulated. The executable model
can help to identify the scenarios of system execution that lead to the KPI
values reflecting both the improvement and the downgrade. The scenarios for
manipulation of KPI values can be also identified. A manipulative scenario is
a scenario of fraud. Existence of these manipulative scenarios is often caused
by the incomplete assumptions about the processes for KPI derivation. It
can also indicate the problems with business processes when the roles and
the access rights are not specified.
From the modelling perspective, we measure the improvement orientation of
a KPI by the number of manipulative scenarios. If the set of manipulative
scenarios is empty, the KPI is oriented to improvement.
Our practical study illustrates all the properties and shows an example of a
plan oriented KPI and an example of an improvement oriented KPI.

5 Case Study

The method for validation of KPIs is shown in Figure 2. The ovals show the
input and the output. The boxes depict steps of the method, and the arrows
indicate model refinement.

The input for the method application is a document that defines KPIs for a
business sector. The KPIs are already designed, and some relevant concepts and
steps of the business process are present in the definitions of KPIs. The brief
summary of the document [5] is presented below.

KPIs and Their Properties Defined with the EXTREME Method 137

1.Identification and relating the business
goals and the measurement goals

2.Conceptual Modeling of KPIs and the
related business processes

3. Protocol modeling the concepts including
KPIs

4.Validating the KPI properties
using the executable protocol
model and the goal model

A textual document with KPI definitions
in a business sector

1) Reliable and Improvement-Oriented KPIs
2) An abstract business process model including the performance

measurement aspect

Generally Desired
Properties of KPIs

Fig. 2. Using EXTREME for validation of KPIs

KPIs of the Program for Improving Access to Psychological Thera-
pies [5].

– KPI1: Level of Need. It presents the number of people who have depression and/or
anxiety disorders in the general adult population. The number presenting popula-
tion is produced as a result of the Psychiatric Morbidity Survey.

– KPI3a: The number of people who have been referred for psychological therapies
during the reporting quarter.

– KPI3b: The number of active referrals who have waited more than 28 days from
referral to first treatment/first therapeutic session (at the end of the reporting
quarter).

– KPI4: The number of people who have entered psychological treatment, (i.e. had
their first therapeutic session) during the reported quarter is related to the concept
person.

– HI1: Access Rate. It indicates the rate of people entering treatment from those
who need treatment HI1 = KPI4

KPI1
.

– KPI5: The number of people completed treatment.
– KPI6: The number of people moving to recovery. This number sums up those who

completed treatment, who at initial assessment achieve “Caseness” and at the final
session - did not.

– KPI6b: The number of people who have completed treatment but were not at
“Caseness” at initial assessment.

– HI2: Recovery Rate. It is calculated using the formula HI2 = KPI6
(KPI5−KPI6b)

.

The IAPT document does not provide information about KPI2 and KPI6a and
states that they are no longer collected.

138 E. Roubtsova and V. Michell

Concept:
Recovery Dashboard
Attributes:
KPI5: Number of people completed treatment
KPI6: Number of people moving to recovery
KPI6b: Number of people not at caseness before treatment
HI2:RecoveryRate

Concept:
Access Dashboard
Attributes
KPI1:Number of people with disorder identified
by the annual survey
KPI4:Number of people with disorder who in
the entered treatment
HI1: Access Rate

Psychological Therapy Program of Improving Access to
Psychological Therapies

Goal: A Referred Person
has access to

psychological therapies

Goal: A referred person
has improved conditions

after treatment

Goal:Measure access
to psychological

therapies

Goal: Measure effectiveness
of treatment

AND AND

Concept:Referred Person

Attributes:
Name: String
Date of Referring: Date
Caseness Before: Boolean
Caseness After: Boolean
State: {Referred, Waited 28 days,
Entered treatment, Completed
treatment}

Concept:Survey

Attributes:
Date of Survey: Date
Population of people with
disorder: Integer

Survey of the Needs of
Population

Goal: Estimate the size of the
population of people needed

psychological therapy

Fig. 3. Goals, Concepts and Protocol Models

The notion of “Caseness” is defined as a result of a condition assessment
procedure. The procedure is applied to a referred person. There is no information
about the rules of assessment and the values of “Caseness”.

Two indicators are called High Indicators (HI). HIs are KPIs calculated from
other indicators. In the terminology of Popova and Sharpanskykh [16], the IAPT
KPIs can be called PIs and IAPT HIs can be called KPIs. We follow the termi-
nology of the IAPT document [5] and call all indicators KPIs.

5.1 Identification and Relating the Business Goals and the
Measurement Goals

In the IAPT document [5], we recognize the goals of measurement:

– ”Measure the access to the psychological therapies.”
– ”Measure the effectiveness of the psychological treatment.”

It is supposed that the underlying business processes:

– ”Estimate the size of population of people needing psychological therapy.”

and guarantee that

KPIs and Their Properties Defined with the EXTREME Method 139

– ”A referred person has access to psychological therapy.”
– ”A referred person has improved conditions after treatment.”

The goals indicate three separate business processes: “Survey of the Needs
of Population,” “Psychological therapy” and “Program for Improving Access to
Psychological Therapies”.

The upper (grey) part of Figure 3 presents the goal model similar to the
models built in Goal-Oriented methods [9]. The boxes are the goals and sub-
goals. Goals are refined by the sub-goals that are combined in this case using
the logical operator AND.

5.2 Conceptual Modelling of KPIs and the Related Processes in
the Organization

As in other approaches [16,19], the goals of each process are refined to concepts
with attributes. The information about the concepts is taken only from the
IAPT document [5]. Concepts are depicted as boxes in the lower (white part) of
Figure 3.

The concept Survey is the result of the process Survey of the Needs of Popu-
lation.

The concept Referred Person is the subject of Psychological Therapy men-
tioned in the goals. We use a generic attribute State and identify its possible
values of state from the IAPT document. For example, the names of the states
of the life cycle of the Referred Person are Referred, Waited 28 days, Entered
treatment and Completed treatment. The results of the condition assessment are
modelled by two attributes CasecessBefore and CasenessAfter. As there is no
indication about the type of Caseness, we assume that the type is Boolean.

In the search of the generic concepts for modeling of KPIs we decided to
follow an approach suggested by Strecker et al [19]. We use a concept to present
a family of measures for each goal of the measurement. We call such a concept a
Dashboard. As in the business intelligence, an instance of a Dashboard presents
a collection of values of measures supporting a particular request.

For example, an instance of the concept Access Dashboard shows the current
values of indicatorsKPI1, KPI3a, KPI3b KPI4 and HI1, measuring the access to
the therapies. An instance of the concept Recovery Dashboard shows the values
of the recovery indicators.

The concepts look like UML classes. However, the scarce information from
the IAPT document does not allow us to build a complete class diagram and
assign roles and relations.

5.3 Protocol Modeling of the Concepts, Including KPIs

In EXTREME, the concepts are modelled as protocol machines (defined in
section 3.1).

The Concept Survey. is modelled as a protocol machine Survey. The protocol
model of the Survey is described as follows (Figure 4):

140 E. Roubtsova and V. Michell

OBJECT Survey

NAME SurveyName

ATTRIBUTES SurveyName: String,

Population:Integer,

DateOfSurvey:Date

STATES created

TRANSITIONS @new*CreateSurvey=created

EVENT CreateSurvey

ATTRIBUTES Survey:Survey,

SurveyName:String,

Population:Integer,

DateOfSurvey:Date

The metacode, presented above, shows that a protocol machine is a state-
transition system. It has its local state described using the keyword STATES

and ATTRIBUTES. A transition from the initial state @new is triggered by event
CreateSurveywhich carries data of types Survey:Survey, SurveyName:String,
Population:Integer, DateOfSurvey:Date.

Each instance of the Survey is created by accepting an event CreateSurvey.
The acceptance of an event CreateSurvey brings with its attribute Population
the number of people who have depression and(or) anxiety disorders and with
its attribute DateOfSurvey the value of the attribute of the protocol machine
Survey. Only the Survey in state “created” can provide the values of its at-
tributes of the LevelOfNeed and Population for performance indicators.

The Concept Referred Person. The set of transitions and the state space of
a protocol machine can be split into behaviours for the sake of separation of con-
cerns. For example, the concept Referred Person is presented as the protocol ma-
chine Referred Person that INCLUDES behaviours Treatment and Assessment.

Attributes CasenessBefore:Boolean and CasenessAfter:Boolean store the
results of assessment of the patient’s conditions.

OBJECT ReferredPerson

NAME PersonName

INCLUDES Treatment, Assessment

ATTRIBUTES PersonName: String, DateOfReferring:Date,

STATES referred, 28daysWaited,left

TRANSITIONS @new*Refer=referred,

referred*Leave=left,

referred*Wait=28daysWaited,

left*Return=referred,

28daysWaited*EnterTreatment=28daysWaited

BEHAVIOUR Treatment

ATTRIBUTES CasenessBefore:Boolean,

CasenessAfter:Boolean,

DateOfCompletion:Date

STATES entered, completed,

TRANSITIONS @new*EnterTreatment=entered,

KPIs and Their Properties Defined with the EXTREME Method 141

entered*CompleteTreatment=completed

BEHAVIOUR Assessment

STATES assessedBefore, assessedAfter

TRANSITIONS @new*AssessBefore=assessedBefore,

assessedBefore*AssessAfter=assessedAfter

EVENT Refer

ATTRIBUTES ReferredPerson:ReferredPerson, PersonName:String,

DateOfReferring:Date

EVENT Leave

ATTRIBUTES ReferredPerson:ReferredPerson

EVENT Wait

ATTRIBUTES ReferredPerson:ReferredPerson

EVENT Return

ATTRIBUTES ReferredPerson:ReferredPerson

EVENT EnterTreatment

ATTRIBUTES ReferredPerson:ReferredPerson,CasenessBefore:Boolean

GENERIC AssessBefore

MATCHES EnterTreatment

Figure 4 shows the protocol machines graphically. Protocol machines look like
state machines. However, they have different semantics.

1) The INCLUDES relation of protocol machines is shown in Figure 4 as an arrow
with a half-dashed end. The INCLUDES relation means that for every instance of
ReferredPerson the instances of thedependentprotocolmachinesTreatmentand
Assessment are created. The behaviours Treatment and Assessment are equally
CSP parallel composed with other protocol machines.

The state space of a Referred Person is the Cartesian product of the state
spaces of the Referred Person and the included behaviours Treatment and
Assessment.

2) Protocol Modelling uses events as elements of interaction between the sys-
tem and the environment and synchronization of protocol machines. Events are
presented as data structures and can carry information. Each transition is la-
belled with an external event.

An event carries data that are used to update the attributes of an instance
of the Referred Person. For example, the value of the DateOfReferring is en-
tered with event Refer. CasenessBefore is updated with event AssessBefore.
CasenessAfter is updated with event AssessAfter.

3) Protocol machines representing different levels of abstraction are easily
composed using event matching mechanism.

For example, event EnterTreatment is matched with (considered as) event
AssessBefore in the behaviour Assessment. Event CompleteTreatment is con-
sidered as AssessAfter in the behaviour Assessment. This is modeled using the
keyword GENERIC.1

1 In terminology of Aspect-oriented modelling events can be seen as join points. [10]

142 E. Roubtsova and V. Michell

created

CreateDashboard
 (start of reporting quarter)

KPI5, KPI6,KPI6b,HI2

Recovery Dashboard

created

KPI1 , KPI3a, KPI3b,
KPI 4, HI1

CreateDashboard
 (start of reporting

quarter)

Access Dashboard

assessed
before

AssessBefore
(CasenessBafore)

Assessment

referred

Refer
(DateOfReffering)

Referred Person

left

Leave Return

Wait

Treatment

entered

Enter
Treatment

completed

Complete
 Treatment

CasenessBefore=
Caseness

CasenessAfter=
Caseness

assessed
after

AssessAfter
(CasenessAfter)

created
created

Population
=Population
DateOfSyrvey=
DateOFSurvey

Survey

CreateSurvey(DateOf Survey,
Population)

28 days
waited

Enter Treatment

Fig. 4. Protocol Model

4) By submitting events a protocol model is deterministically populated with
any number of instances of protocol machines.

5) As a consequence of the CSP parallel composition of protocol machines,
the model has only the quiescent states, i.e. the states where the system does
not proceed any event. All states can be justified by the system goals. Modelling
and reasoning can be focused on the business semantics. Protocol machines in
quiescent states can be selected for KPI measurement.

Dashboards and KPIs. The concept Access Dashboard and Recovery Dash-
board are modelled as protocol machines.

KPIs and Their Properties Defined with the EXTREME Method 143

OBJECT DashboardAccess

NAME DashboardName

ATTRIBUTES DashboardName:String,

StartOfReportingQuarter:Date,

!LevelOfNeed:Integer,

!NumberReferredPersons:Integer,

!NumberReferredPersonsWaited:Integer,

!NumberOfEnteredTreatment:Integer,

!AccessRate: Integer,

STATES created

TRANSITIONS

@new*CreateDashboardAccess=created

OBJECT DashboardRecovery

NAME DashboardName

ATTRIBUTES DashboardName:String,

StartOfReportingQuarter:Date,

!NumberOfCompletedTreatment:Integer,

!NumberOfPeopleMovingToRecovery:Integer,

!NumberOfCasenessPeopleBeforeTreatment:Integer,

!RecoveryRate:Integer

STATES created

TRANSITIONS

@new*CreateDashboardRecovery=created

EVENT CreateDashboardAccess

ATTRIBUTES DashboardName:String,

DashboardAccess:DashboardAccess,

StartOfReportingQuarter:Date

EVENT CreateDashboardRecovery

ATTRIBUTES DashboardName:String,

DashboardRecovery:DashboardRecovery,

StartOfReportingQuarter:Date

The protocol machines AccessDashbord and RecoveryDashboard combine
two groups of KPIs to monitor the access and recovery. Each dashboard protocol
machine reads the state of protocol machines Survey and Referred Person and
derives the values of own attributes presenting KPIs. The derived attributes of
dashboard protocol machines, marked by the exclamation symbol “!”, represent
the corresponding KPIs.

The graphical representation (Figure 4) does not provide all the elements of
the model. The complete protocol model of each of concepts Access Dashboard
and Recovery Dashboard include algorithms (or state functions) for calculation
of KPIs.

For example, the KPIs of the Recovery Dashboard are derived below. Each of
the KPIs contains a part selecting objects (selectInState()). The selected objects
are filtered on the bases of the selection predicate (if construction). The filtered
objects are counted calculating the value of the corresponding KPI.

144 E. Roubtsova and V. Michell

public class DashboardRecovery extends Behaviour {

public Date getStartOfReportingQuarter(){
Calendar cal=Calendar.getInstance();
Date StartQuarter = this. getDate("StartOfReportingQuarter");
cal.setTime(StartQuarter);

return StartOfReportingQuarter;
}
public Date getEndQuarter(){

Calendar cal=Calendar.getInstance();
Date StartQuarter = this. getDate("StartOfReportingQuarter");
cal.add(Calendar.MONTH, 3);
Date EndOfReportingQuarter=cal.getTime();;

return EndOfReportingQuarter;
}

// KPI 5 Number of People Completed Treatment in the reported quarter
public int getNumberOfCompletedTreatment() {

int NumberOfCompletedTreatment=0;
Date StartRQ = getStartQuarter();
Date EndRQ=getEndQuarter();

Instance[] completedTreatment = selectInState("ReferredPerson", "referred");
for (int i = 0; i < completedTreatment.length; i++) {
Date completionDate=completedTreatment[i].getDate("DateOfCompletion");
String treatmentState = completedTreatment[i].getState("Treatment") ;
if (completionDate.compareTo(StartRQ)>=0 &&

completionDate.compareTo(EndRQ)<=0 &&
treatmentState.equals("completed"))

NumberOfCompletedTreatment+=1;
}

return NumberOfCompletedTreatment;
}

// KPI 6 Number of People Moving To Recovery
public int getNumberOfPeopleMovingToRecovery() {

int NumberOfPeopleMovingToRecovery=0;
Date StartRQ = getStartOfReportingQuarter();
Date EndRQ=getEndOfReportingQuarter();

Instance[] completedTreatment = selectInState("ReferredPerson", "referred");
for (int i = 0; i < completedTreatment.length; i++){

Date completionDate=completedTreatment[i].getDate("DateOfReferring");
String treatmentState = completedTreatment[i].getState("Treatment");
Boolean CA=completedTreatment[i].getBoolean("CasenessAfter");
Boolean CB=completedTreatment[i].getBoolean("CasenessBefore");
if (completionDate.compareTo(StartRQ)>=0 &&

completionDate.compareTo(EndRQ)<=0 &&
treatmentState.equals("completed") &&
CB==false && CA==true)

NumberOfPeopleMovingToRecovery+=1;
}

return NumberOfPeopleMovingToRecovery;
}

// KPI 6b NumberOfCasenessPeopleBeforeTreatment from in the reported quarter
public int getNumberOfCasenessPeopleBeforeTreatment () {

int NumberOfCasenessPeopleBeforeTreatment=0;
Date StartRQ = getStartQuarter();
Date EndRQ=getEndQuarter();

Instance[] completedTreatment = selectInState("ReferredPerson", "referred");
for (int i = 0; i < completedTreatment.length; i++) {

Date completionDate=completedTreatment[i].getDate("DateOfReferring");
String treatmentState = completedTreatment[i].getState("Treatment");
Boolean CB=completedTreatment[i].getBoolean("CasenessBefore");
if (completionDate.compareTo(StartRQ)>=0 &&

completionDate.compareTo(EndRQ)<=0 &&

KPIs and Their Properties Defined with the EXTREME Method 145

treatmentState.equals("completed") &&
CB==true)

NumberOfCasenessPeopleBeforeTreatment+=1;
}

return NumberOfCasenessPeopleBeforeTreatment;
}

The strategic indicators combine the KPIs producing rates. For example, the
recovery rate combines three indicators:

// HI2 Recovery Rate KPI6/(KPI5-KP6b)
public int getRecoveryRate() {

int zn=(this.getInteger("NumberOfCompletedTreatment")-
this.getInteger("NumberOfCasenessPeopleBeforeTreatment"));
int RecoveryRate=0;
if (zn==0){ RecoveryRate=0;}
else {
RecoveryRate=(100*this.getInteger("NumberOfPeopleMovingToRecovery"))/zn;
}

return RecoveryRate;
}
}

The complete protocol model can be found in [18]. The Model is executable
in the Modelscope tool [11]. The tool generates an interface from the model.
The interface is used to submit events, create objects and observe the values of
attributes, i.e test the model and validate KPIs.

5.4 Validating the KPI Properties by Using the Executable
Protocol Model, Goal and Conceptual Models

Let us analyze if the KPIs in our case study have the desired properties, men-
tioned in section 4.

1.The quantifiability of KPIs.
The KPIs have been modelled as attributes of the concept Dashboard. The

protocol model has an algorithm for derivation for each KPI. The algorithm for
calculation of a KPI is in the quantifiable form. It contains a predicate for the
selection of a number of business objects (presented as protocol machines) using
the given time interval and a set of given values of object attributes.

Protocol modelling has predefined select functions. Function

selectInState(”BehaviourName”, ”State”)

returns an array of objects (”Behaviour name”) , all of which are in the specified
state (”State”). Function

selectByRef(”BehaviourName”, ”AttributeName”)

returns an array of objects, all of which have the specified attribute. The select
functions enable modelling of quantifiable KPIs.

For example, the KPI 6b (the derive function has been shown in the previous
section) selects Referred Persons initially assessed as Caseness: CB=true and
then completed treatment within the reporting quarter RQ:

146 E. Roubtsova and V. Michell

selectInState(”ReferredPerson”, ”referred”) & treatmentState.equals(”completed”) &

completionDate.compareTo(StartRQ) ≥ 0 & completionDate.compareTo(EndRQ) ≤ 0.

The number of selected referred persons is counted and gives the value of the
indicator. All other KPIs of this case study are similar to KPI6b.

2. The linearity of a KPI can be tested using the executable model for each
KPI. For testing, the model should be populated with objects. The properties
of these objects should meet the selection criteria. For example, for the KPI 6b
the model should be populated with referred persons initially assessed as case-
ness and completed treatment within the reporting period. The KPI 6b should
count the amount of such referred persons. The population should also contain
the objects that do not meet the selection criteria. Those objects should not be
counted by the KPI derivation algorithm.

3. The sensitivity should be always validated for strategic indicators presented
as rates. The large value of the denominator of a fraction can make the indicator
insensitive. The sensitivity of the strategic indicators of our case Recovery Rate
and Access Rate is increased using the percent scale.

4. We measure the semantic reliability of a KPI by the number of additional
assumptions that need to be made in order to derive the KPI value. If the set
of additional assumptions is empty, the KPI is semantically reliable. If the set
of additional assumptions is not empty, then the execution and demonstration
of the model to the users may be used to validate the assumptions because the
users may have more knowledge than the KPI definition document.

For example, in our case, the procedure of assessment of the patient’s con-
ditions as Caseness is not specified by the IAPT document. We assume that a
Caseness is a Boolean value coming from the environment. However, in practice,
the Caseness may, for example, be assessed using a ten-point scale.Therefore, the
KPIs, that depend on data assessed via Caseness, are not semantically reliable.

The KPI HI:Recovery Rate depends on the procedure of testing Caseness
both before and after treatment:

HI2 : RecoveryRate =

NumberOfPeopleMovingToRecovery

(NumberOfPeopleCompletedTreatment − NumberOfCasenessPeopleBeforeTreatment).

We conclude that this KPI is not semantically reliable.

5. The improvement orientation of a KPI is validated for the strategic indicators
as they are directly related to the goals of the system.

The meaning of improvement is rarely defined in the KPI documents. It de-
mands extra efforts to guess the notion of improvement by analysing the goals
of measurement.

KPIs and Their Properties Defined with the EXTREME Method 147

There is a danger of replacing the improvement orientation of KPIs with the
plan orientation. In such a case, the “desired” value of KPIs may be achieved
through manipulating of numbers of instances in the business process.

Our case study presents examples of both an improvement-oriented KPI and
a possibly plan-oriented KPI.

The KPI

HI1 : AccessRate =
NumberOfEnteredTreatment

LevelOfNeed

is an example of an improvement-oriented KPI. It corresponds to the goal: “A
Referred Person has access to psychological therapies.” We assume that the im-
provement means the positive growth of the ratio of treated people to the people
needed treatment.

Modelling shows that the numerator and the denominator of the KPI are
the numbers derived from separate processes Referred Person and Survey. The
processes are executed by different organizations, that do not depend upon each
other. The LevelOfNeed comes from a Survey. The NumberOfEnteredTreatment
is a sum of individually Referred Persons. The numbers of objects of separated
processes grow independently through the model execution. The manipulation of
the numerator and denominator of the KPI is unlikely. Only by the process im-
provement (for example, by shorten the time of waiting) the higher value of the
Access Rate can be achieved. Therefore, we conclude that the KPI HI1:Access
Rate is oriented to improvement.

The KPI

HI2 : RecoveryRate =

NumberOfPeopleMovingToRecovery

(NumberOfPeopleCompletedTreatment − NumberOfCasenessPeopleBeforeTreatment).

is an example of KPI that may become plan oriented and open to manipulations.
For validation of the improvement orientation of this indicator, we use both
the goals associated with KPIs and the model of the underlying process. The
KPI corresponds to the goal ”A Referred Person after treatment has improved
conditions”.

A person moves to recovery if the assessment of Caseness before treatment is
false (sick) and after treatment is true (healthy). The improvement corresponds
to the growth of the Recovery Rate of persons that move to recovery. If the pro-
cedures of the Caseness assessment and treatment are assigned to the employees
of the same organization, who have their interest in high value of Recovery Rate,
the value of Recovery Rate can be manipulated to meet the planned values. This
can be done by assessing healthy people as sick before the treatment and send-
ing them for the treatment and/or by assessing sick people as healthy after the
treatment. The corresponding scenarios can be shown by model execution.

Validating this property, we conclude that the information in the KPI docu-
ment is not sufficient to assure the improvement oriented Recovery Rate.

One of the possible solutions for improvement of the KPI document may be the
following constraint to the business processes of organizations: “The assessment

148 E. Roubtsova and V. Michell

of Caseness and treatment should be fulfilled by two independent institutions
with different sources of financial support”.

Another possible solution is the definition of the rules for Caseness assess-
ment, including the assignment of organizations responsible for the treatment
and assessment.

The presented examples show that the combination of the goal, conceptual and
protocol models, used in EXTREME, provides a useful instrument for validation
of KPI properties and leads to discovery of tacit constraints and rules in KPI
definitions.

6 Conclusion

In this paper, we have proposed a method for modelling of KPIs and validation of
their properties using the approach called EXecutable Requirements Engineering
Management and Evolution (EXTREME).

The contribution of this paper is the constructive definition of a KPI. The
definition specifies a procedure for calculation of a KPI in models and in infor-
mation systems. The definition also clarifies the procedures for assessment and
validation of properties of KPIs on models.

As a byproduct of the modelling of KPIs with the EXTREME method, an
executable model of an abstract organization in an industry sector is produced.
In future work, this model can be used for standardization of performance mea-
sures in an industry sector and for assessment of applicability of KPIs in real
organizations.

References

1. Allen, R., Garlan, D.: Beyond Definition/ Use: Architectural Interconnection. In:
Proceedings, Workshop on Interface Definition Languages, Portland, Oregon (1994)

2. Alsumait, A., Seffah, A., Radhakrishnan, T.: Use Case Maps: A Visual Notation
for Scenario-Based Requirements. In: 10th International Conference on Human -
Computer Interaction (2003),
http://wwwswt.informatik.uni-rostock.de/deutsch/

Veranstaltungen/HCI2003/

3. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program 20(1-2), 3–50 (1993)

4. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International (1985)
5. Improving Access to Psychological Therapies. IAPT Key Performance Indicator

(KPI). Technical Guidance for Adult IAPT Services (2013),
http://www.iapt.nhs.uk/silo/files/

iapt-kpi-technical-guidance-201213-v20-.pdf

6. ITU. Formal description techniques (FDT). User Requirements Notation Recom-
mendation Z.151 (11/08), http://www.itu.int/rec/T-REC-Z.151-200811-I/en

7. Jensen, K.: Coloured Petri Nets. Springer (1997)
8. Kueng, P.: Process performance measurement system - a tool to support process-

based organizations. Total Quality Management 11(1), 67–85 (2000)

http://wwwswt.informatik.uni-rostock.de/deutsch/Veranstaltungen/HCI2003/
http://wwwswt.informatik.uni-rostock.de/deutsch/Veranstaltungen/HCI2003/
http://www.iapt.nhs.uk/silo/files/iapt-kpi-technical-guidance-201213-v20-.pdf
http://www.iapt.nhs.uk/silo/files/iapt-kpi-technical-guidance-201213-v20-.pdf
http://www.itu.int/rec/T-REC-Z.151-200811-I/en

KPIs and Their Properties Defined with the EXTREME Method 149

9. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition sys-
tems from goal-oriented requirements models. Automated Software Engineering
Archive 15(2), 175–206 (2008)

10. McNeile, A., Roubtsova, E.: CSP parallel composition of aspect models. In: Pro-
ceedings of the 2008 AOSD Workshop on Aspect-Oriented Modeling, AOM 2008,
pp. 13–18. ACM, New York (2008)

11. McNeile, A., Simons, N.: (2005), http://www.metamaxim.com/
12. McNeile, A., Simons, N.: Protocol Modelling. A Modelling Approach that Supports

Reusable Behavioural Abstractions. Software and System Modeling 5(1), 91–107
(2006)

13. Mount, S., Hammoudeh, M., Wilson, S., Newman, R.: CSP as a domain-specific lan-
guage embedded in Python and Jython. In: Welch, et al. (eds.) [248], pp. 293–309
(2009)

14. OMG. Unified Modeling Language: Superstructure version 2.1.1 formal/2007-02-03
(2003)

15. Parmenter, D.: Key Performance Indicators, Developing, Implementing and Using
Winning KPIs. John Wiley & Sons, New Jersey (2010)

16. Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators.
Information Systems 35(4), 505–527 (2010)

17. Roubtsova, E.: EXTREME: EXecuTable Requirements Engineering, Management
and Evolution. In: Diaz, V.G. (ed.) Progressions and Innovations in Model-Driven
Software Engineering, pp. 65–89. IGI Global (2013)

18. Roubtsova, E.: Protocol Model of the KPIs from the program “Improving Access
to Psychological Therapies” (2013), http://www.open.ou.nl/elr/IAPT.zip

19. Strecker, S., Frank, U., Heise, D., Kattenstroth, H.: MetricM: A modelling method
in support of the reflective design and use of performance measurement systems.
Springer, Information Systems and e-Business Management 10, 241–276 (2012)

20. Yu, E.: Modelling Strategic Relationships for Process Reengineering. Ph.D. Thesis.
Dept. of Computer Science, University of Toronto (1995)

http://www.metamaxim.com/
http://www.open.ou.nl/elr/IAPT.zip

	KPIs and Their Properties Defined with the EXTREME Method
	Introduction
	Related Work
	Approaches for KPI Modelling
	Goal Modelling Approaches and Modelling of KPIs

	EXTREME: Goal Modelling with Protocol Modelling
	Protocol Models and Their Execution

	Definition of KPIs and Their Properties in EXTREME
	Case Study
	Identification and Relating the Business Goals and the Measurement Goals
	Conceptual Modelling of KPIs and the Related Processes in the Organization
	Protocol Modeling of the Concepts, Including KPIs
	Validating the KPI Properties by Using the Executable Protocol Model, Goal and Conceptual Models

	Conclusion

