
Motivation Modelling

for Human-Service Interaction

Ella Roubtsova

Open University of the Netherlands
ella.roubtsova@ou.nl

Abstract. Web services are goal-oriented software systems and need to
influence or motivate, favour or dis-favour particular behaviour of their
communication parties: humans and other services.
This paper investigates modeling of motivation for human-service inter-
action. It shows why motivation needs a separate model different from
the service process model, how to specify motivation and compose the
motivation model with the service process model.
Depending on the goals, the same service process model may have differ-
ent motivation models. We provide an example of a service model with
different motivation models that stimulate different behaviour of humans
interacting with the web service. We show that motivation modelling is
yet another way of web service reuse.

Keywords: Motivation Model, Service, Process, Protocol Model

1 Introduction

In 2010, the Object Management Group and the Business Rules Group com-
pleted their work on the Business Motivation Model (BMM), Version 1.1 [13,
15]. The BMM provides a scheme or structure for developing, communicating,
and managing business plans. The schema covers four related elements:
1. The Ends of a business plan. “Among the Ends are things the enterprise
wishes to achieve, for example, Goals and Objectives” [15].
2. The Means of a business plan.“Among the Means are things the enterprise
will employ to achieve the Ends, for example, Strategies, Tactics, Business Poli-
cies, and Business Rules”.
3. “The Influences that shape elements of a business plan”.
4. “The Assessments that are made about the impacts of such Influencers on
Ends and Means (i.e., Strengths, Weaknesses, Opportunities, and Threats).”

The OMG predicts that “three types of people are expected to benefit from
the Business Motivation Model: developers of business plans, business modelers,
and implementers of software tools and repositories”. The Business Rule Group
believes that “Eventually specifications such as the Business Process Model-
ing Notation (BPMN) together with the Business Motivation Model (BMM)
should be merged into a single business-oriented modeling architecture, and im-
plemented in integrated tool suites”[15].

In this paper we make a step in direction of relating BMM with business pro-
cesses and show how business modelers can benefit from motivation modelling.
The motivation modelling is especially important for the modern electronic busi-
ness that covers any area of human life. Web services govern job application,
purchasing orders, booking requests, testing and requesting official documents -
the list of web services is endless. Depending on their goals, web services need
to motivate their users to choose particular actions among all possible actions.
If business services are provided by people, these people motivate actions of cus-
tomers. The web services themselves favour the choices of their customers and
therefore they should benefit from having well designed motivation models built
into them. This motivation of users is a some sort of intelligence that we need to
add to services. The first step to systematic use of this intelligence is propagating
the business Ends (Goals and Objectives) to the business process.

The BMM is not a full business model and it does not prescribe in detail busi-
ness processes, workflows and business vocabulary. However, business processes
are key elements of business plans and the BMM does include a placeholder for
Business Processes. The relations between Goals and other elements of BMM
are left open.

Goals are usually formulated as non-functional requirements. They are usu-
ally abstract. The goals can be even unrealisable. The Objectives corresponding
to goals are specific and measurable. They show realisability of goals. The moti-
vation modelling can be seen as transformation of Goals into the corresponding
Objectives described using elements of business processes and as a way to esti-
mate realisability of Goals.

This paper presents a model of Business Motivation in Business Processes.
We show how the semantics of Protocol Modelling [10] allows for localizing the
motivation model in the business processes.

The structure of the paper is the following. Section 2 discusses related work.
In Section 3 we formally define a process and introduce a motivation model on a
process. Section 4 shows how to propagate the business goals and combination of
goals to the motivation model of the process. Section 5 discusses the advantages
of our approach to motivation modelling. Section 6 concludes the paper and
identifies future work.

2 Related Work

There are many approaches that try to relate goals and processes.
The User Requirements Notation (URN) [4] is a standard that recommends

languages for software development in telecommunication. The URN consists
of the Goal-Oriented Requirements Language (GRL), based on i* modelling
framework [17], and Use Case Maps (UCM) [1], a scenario modelling notation.
The GRL provides a notation for modelling goals and rationales, and strategic
relationships among social actors [18]. It is used to explore and identify system
requirements, including especially non-functional requirements. The UCM is a
convenient notation to represent use cases. The use cases are selected paths in

the system behaviour and they can be related to goals by developers. The goals
are used to prioritize some use cases. If a use case presents alternative behaviours
or cycles, then the goals prioritize alternatives. The use cases can be simulated.
However, use cases do not model data and the state of the system and they
present only selected traces. This means that behaviour model as well as the
motivation model shown by use cases are incomplete and cannot be used for
code generation.

Letier at al. [5] derive event-based transition systems from goal-oriented re-
quirements models. The goal-oriented models are defined in the well known
declarative approach KAOS (Knowledge Acquisition in autOmated Specifica-
tion) [2]. Goals are specified in Linear Temporal Logic and organized using the
AND and OR refinement structures. Then the operations are derived from goals
as triples of domain pre-conditions, trigger conditions and post-conditions for
each state transition. The declarative goal statements are transformed into the
operational model. To produce consistent operational models, a required trigger
condition on an operation must imply the conjunction of its required precondi-
tions.

Van at al [16] propose goal-oriented requirements animation. The modelling
formalism is the UML State Diagrams that are generated from the goal specifica-
tions and called Goal State Machines (GSMs). A GSM contains only transitions
that are justified by goals. The GSMs are synchronized through event broadcast.
A GSM that can’t accept an event in its current state keeps it in a queue. These
events will be submitted to goal state machines internally. This means that the
composition of GSMs contains extra states that cannot be composed from the
states of separate GSMs. Therefore the GSMs cannot be seen as motivation
models for the human-service interaction as they also deal with the events from
the queues.

The problems of goal-oriented approaches are mostly caused by different se-
mantics used by process modelling and goal modelling techniques. Letier at al [5]
explained that the operational specification and the KAOS goal models use dif-
ferent formalisms. KAOS uses synchronous temporal logics that are interpreted
over sequences of states observed at a fixed time rate. The operational models
use asynchronous temporal logics that are interpreted over sequences of states
observed after each occurrence of an event. Temporal logic operators have very
different meanings in synchronous and asynchronous temporal logics. Most oper-
ational formalisms have the asynchronous semantics. Letier at al. [5] admit that
in order to be semantically equivalent to the synchronous KAOS models, the
derived event-based models need to refer explicitly to timing events or include
elements of synchronization.

In this paper we present the protocol modelling semantics that uses syn-
chronous composition of concurrent behaviours and can be used both for process
modelling and motivation modelling.

3 Model of Motivation

3.1 Process with can-semantics

In order to relate motivation and business process, we need a model of a process,
a state transition system. We take a state transition system which is usually pre-
sented as a triple of P = (S, A, T), where
- S is a finite set of states {s1,si, ...sj ...},
- A is the alphabet of P , a finite set of environmental actions ranged over
{a, b, ...},
- T is a finite set of transitions (si, a, sj).

The semantics of a transition contains two relations [11]:
- C ⊆ (A × S) is a binary relation, where (a, s) ∈ C means that action a is a
possible action for P when in state s. C is called the can-model of P because it
models the actions that P “can do” in each state.
- U is a total mapping C → S that defines for each member of C the new state
that P adopts as a result of the action. U(a; si) = sj means that if P engages in
action a when in state si it will then adopt state sj. U is called the update-model
of P because it models the update to the state of P that results from engagement
in an action.

With separation of the can- and update-models a process P is a tuple:

P = (S; A; C; U).

3.2 Motivation Modelling

There are always states in the process where particular goals are achieved. Let
us name them goal states. From the goal perspective the actions leading to a
goal state are the priority actions or wanted actions in the states preceding the
goal state. So, a state preceding a goal state and the action that may lead to the
goal state, form a new binary relation:

– W ⊂ (A×S), (a; s) ∈ W means that action a is a wanted action for P when
in state s. We call relation W the want-model to show its semantic difference
from the relation C [8] .

In order to model motivation we propose to add the want-model W to the
process:

P = (S; A; C; U ; W).

The can- and want-models of a process are independent of each other, so
when a process is in a given state, an action can have different combinations of
can- and want- alternatives:

{can happen; can not happen} × {wanted; not wanted}

Usually W ⊆ C and W is included into the process model. However, the new
goals emerging in the life cycle of the modeled system may challenge the process
and may need actions that do not belong to the alphabet A.

In this paper we base the modeling of motivation on this extra relation W
added to the process.

3.3 Human-Computer Interaction

As want-models do not contribute to behaviour of the systems but motivate the
human communication with the service, the most simple application of motiva-
tion models is the justified design of human-computer interface.

A service presents to a human the possibilities and wishes in form the can-
and want-model. For example, two events can be submitted, but only one of
them is wanted:

((a; sP) ∈ C) ∧ ((b; sP) ∈ C) ∧ ((a; sP) ∈ W).

The human can choose any possible action, but the action indicated by the
want-model leads in this step to achieving a goal of the service:

((a; sP) ∈ C) ∧ ((a; sP) ∈ W)

Having a chosen goal in mind it is possible to favour the paths leading to the
goal states by indicating wanted actions in any state of the process.

3.4 Several Goals

A service may have several (n) goals. In this case several want-models should be
taken into account

P = (S; A; C; U ; WG1, ..., WGn).

The goals can be OR-composed or AND-composed [14].
In real systems, some goals can be conflicting. For instance, information goals

may conflict with security and privacy goals. Wishes of different user roles may
also conflict. Two goals are conflicting if the system has a state from which
it is impossible to reach a state where both goals are satisfied simultaneously.
It is important to identify any conflicting goals and corresponding motivation
models as soon as possible in the software life cycle. One of the ways to do this
is motivation modelling.

3.5 Motivation Modelling in Workflows and State Machines

Conventional behaviour modelling techniques use only can-semantics and there-
fore they do not provide means for motivation modelling.

For example, if a process is presented as a workflow, as an activity diagram,
then to specify a want-model extra means are needed to identify the wanted
outgoing transitions in each state. For, example, we can colour the wanted tran-
sitions. The state of a workflow is a set of marked nodes, so the combinations of
nodes have to be built to formulate a want-model. If several want-models should
be presented, then an incomprehensible spaghetti of coloured sub-diagrams will
cover paths of the workflow.

If a system is specified as a composition of communicating state machines
then this model often contains states that cannot be described as composition of

states of composed state machines. Such states appear because the semantics of
state machines includes queues to keep the events which were submitted to the
system when the system was not able to accept them. Such events are waiting
for acceptance and may affect the wanted transitions in any state.

4 Motivation Models in Protocol Modelling

The semantics of the Protocol Modelling approach [10] offers an easy and prac-
tical way to model motivation separately from the can-update-model of the pro-
cess. The Modelscope tool [9] supporting Protocol Modelling enables execution
of can-models with different motivation models.

A Protocol Model is a synchronous CSP parallel composition of protocol
machines [10]. This composition has its roots in the algebra Communicating
Sequential Processes (CSP) proposed by Hoare [3]. McNeile [10] extended this
composition for machines with data. The CSP parallel composition means that
a Protocol Model accepts an event if all the protocol machines recognizing this
event accept it. Otherwise the event is refused.

We will introduce the relevant semantics of Protocol Modelling on a sim-
ple example and show how one can-update-model can be used with different
motivation models (want-models). We show how the motivation model justifies
different human-computer interface for the same can-update-model.

4.1 Web service: Insert Credit Card Number

Goals and Requirements

Our simple case study is an Insert Credit Card Number web service that can be
seen in many electronic booking systems. The user of the service instantiates the
service. The user is asked to insert his credit card number and read the privacy
conditions of the service. The user may insert the credit card number without
reading the privacy conditions and after reading and accepting the privacy con-
ditions. When the user has accepted the privacy conditions, he can rethink and
read the statement again. The service can always be cancelled before inserting
the credit card number.

In any set of requirements there are goals and other concerns. Figure 1 shows
them in notation of the KAOS method. We recognize two goals for this service,
namely,

– to get the credit card number inserted and

– to get the privacy conditions read by the user.

The possibility of service cancelation is yet another concern. It is obvious that
cancelation cannot be called a goal of the service.

Insert

Credit Card

Number

Credit Card

Number

inserted

Privacy

Statement

read

Service can be

canceled from any

Intemediate state

AND
AND

OR

Fig. 1. Goal model of the web service: Insert Credit Card Number

4.2 Process model of the service

After the identification of the goals the KAOS suggests to identify objects,
agents, entities and operations. Using Protocol Modelling we also fulfil this iden-
tification but we do this with the help of protocol machines. The advantage is
that we result in an executable model of identified objects, agents and entities
and can verify and even motivate achievement of chosen goals. Not all scenarios of
system behaviour lead to goal states. There should be a can model that presents
the life cycles of objects, agens and entities mentioned in the requirements.

We model the can-update process as a CSP composition of protocol machines
Input, Decision and Cancelation. The graphical presentation of these protocol
machines is in Figure 2. The executable Modelscope code is shown in Figure 3.

The protocol machine Input is an OBJECT, it has its identification name.
The protocol machines Decision and Cancelation are BEHAVIOURS. They are
included into each instance of object Input. This is shown as include relations
between protocol machines depicted as arcs with half-dashed ends.

A human interacts with the service by submitting events. Each protocol ma-
chine has an alphabet of recognized events. The events recognized by protocol
machines are specified as types. Each type is a data structure. Each instance
of an event type contains own values of specified types. For example, each in-
stance of event Insert contains own identifier Input:Input and Credit Card

Number: Integer. All three machines are synchronously instantiated accepting
event Instantiate. Generic Finalize is an alias of events Insert and Cancel.

Similar to a state machine, a protocol machine has a set of states and the
local storage presented with attributes. However, the semantics of a protocol
machine is different.

– A transition label of a state machine presents the pre-condition and the post-
condition for enabling event to run to completion. A transition from state s1

to state s2 is labeled by (s1, [precondition] event/ [postcondition], s2) [12].

��������

�����

���	

�������

�������

����
���
���

�����	

���
���
�� ������

���	
	��

����������������������
���	���

��
��������	������������

���
�

���
����

���
����

�������

���
���
��

�
�������

������	��

���	

�
�������

�
�������
���
��

���������	�������	�������

������

������

Fig. 2. Can-Update-Model: Insert Credit Card Number

1 MODEL InsertCreditCardNumber

2 OBJECT Input

3 NAME Session

4 INCLUDES Decision, Cancelation

5 ATTRIBUTES Session: String, Card Number: Integer

6 STATES instantiated,inserted

7 TRANSITIONS @new*Instantiate=instantiated,

8 instantiated*Insert=inserted

9

10 BEHAVIOUR Decision

11 STATES instantiated ,not accepted, accepted, final

12 TRANSITIONS @new*Instantiate=not accepted,

13 not accepted*Accept=accepted,

14 accepted*Rethink=not accepted,

15 accepted*Finalize=final,

16 not accepted*Finalize=final

17 BEHAVIOUR Cancelation

18 STATES not cancelled, cancelled

19 TRANSITIONS @new*Instantiate=not cancelled,

20 not cancelled*Cancel=cancelled,

21

22 EVENT Instantiate

23 ATTRIBUTES Input:Input, Session:String,

24 EVENT Insert

25 ATTRIBUTES Input: Input, Credit Card Number: Integer,

26 EVENT Accept

27 ATTRIBUTES Input:Input,

28 EVENT Rethink

29 ATTRIBUTES Input:Input,

30 EVENT Cancel

31 ATTRIBUTES Input:Input,

32 GENERIC Finalize

33 MATCHES Insert, Cancel

34

Fig. 3. Meta code of the Can-Update-Model: Insert Credit Card Number

The label shows that the transition in a state takes place only if the pre-
condition is satisfied. If the pre-condition is not satisfied, the behaviour is
defined by the semantic rules. Namely, the event is kept in a queue and waits
for a state change to fire the transition.

– A transition label of a protocol machine presents an event that causes this
transition. The storage information is localized in the state. Being in a qui-
escent state in which the protocol machine can accept the submitted event,
the protocol machine accepts one event at a time and handles it until an-
other quiescent state. If the protocol machine cannot accept the event in its
current state, the event is refused [10, 7].

The default type of protocol machines is ESSENTIAL. Essential protocol machines
are composed (synchronized) using the CSP parallel composition and these ma-
chines are used to present the can-update-model, the business process.

4.3 Protocol Machines of Motivation Models

There are some semantic properties of Protocol Modelling that allow for local-
ization of motivation modelling and separation it from the Can-Update-model.

1. Thanks to the abilities of protocol machines to read but not modify the
state of other protocol machines and to have an associated state function, it is
possible to build protocol machines with derived states.

A derived state is a state that is calculated from the states of other machines
using the state function associated with the protocol machine.

2. Thanks to different types of protocol machines, the use of composition can
be changed.

The protocol machines of type DESIRED are not composed using the CSP
parallel composition technique. These machines can be used to model the wanted
behaviour.

3. It is also important that the refusal of events arriving, when the system
is not able to accept them, guarantees that any state of a protocol model is al-
ways described as a composition of states of a final subset of composed protocol
machines.

According to the definition given in section 3.2, a state of a want-model is
related to some states of the process. Therefore, a want-model is presented as a
protocol machine that does not have stored states but only derived states.

Want-models do not define new events, they indicate some events accepted
by the corresponding can-update-models as wanted. A want-model cannot for-
bid any transition in the can-update-model and does not participate in the event
synchronization with the can-update-models. Therefore, the want-models are not
composed using the CSP parallel composition and have type DESIRED. Summa-
rizing, the semantic of Protocol Modelling provides expressive means to specify
motivation.

34

35 BEHAVIOUR !Motivate Insert

36 TYPE DESIRED

37 STATES motivate insert, other

38 TRANSITIONS motivate insert*Insert=@any

39

40 BEHAVIOUR !Motivate Accept

41 TYPE DESIRED

42 STATES motivate accept, other

43 TRANSITIONS motivate accept*Accept=@any

44

1 package InsertCreditCardNumber;

2

3 import com.metamaxim.modelscope.callbacks.*;

4

5

6 public class MotivateInsert extends Behaviour {

7

8 public String getState() {

9

10

11 String y=this.getState("Input");

12 String x=this.getState("Decision");

13 if (y.equals("instantiated")

14 || x.equals("accepted")

15) return "motivate insert";

16 else return "other";

17 }

18

19 }

20

1 package InsertCreditCardNumber;

2

3 import com.metamaxim.modelscope.callbacks.*;

4

5

6 public class MotivateAccept extends Behaviour {

7

8 public String getState() {

9

10 String x=this.getState("Decision");

11 if (x.equals("not accepted")

12) return "motivate accept";

13 else return "other";

14 }

15

16

17 }

18

Fig. 4. Motivate Accept.Motivate Insert.

Motivate Insert. Motivate Accept. The meta-code and the corresponding call-
back functions in Figure 4 show how motivation models corresponding to each
goal are modelled as protocol machines.

Protocol machines Motivate Insert and Motivate Accept have exclama-
tion marks that show to the Modelscope tool that there are call-backs java files
with the same names. Each call-back function derives state of the motivation
model from the state of the objects and behaviours of the can-update-model.

For example, if the state of object Input is instantiated or the state of
the behaviour Decision is accepted then state motivate insert is derived for
protocol machine Motivate Insert.

The motivation models are depicted in Figure 5. The graphical presentation
does not contain call-back functions.

��������

�����

���	

�������

�������

����
���
���

�����	

���
���
�� ������

���	
	��

����������������������
���	���

��
��������	������������

���
�

���
����

���
����

�������

���
���
��

�
�������

�������	��

���	

�
�������

�
�������
���
��

���������	�������	�������

������

������

 ���!
��

�����

���	������
���

�����

 ���!
��

������

������

���	����������

������

������

Fig. 5. Graphical Presentation of Motivation Models: Motivate Insert and Motivate
Accept

4.4 Combination of goals

If the goals are OR-composed then achieving any of the goals is the goal and
both call-back functions shown in Figure 4 are valid.

Motivation model of the AND-combination of goals should not direct to
states where at least one of goals cannot be achieved. In our case, motivation
of event Insert when the object Input is in the state instantiated leads
to the state where the goal to get the privacy condition accepted will
never be achieved. This state should be deleted from the call-back function
MotivateInsert as shown in Figure 6.

1 package InsertCreditCardNumber;

2

3 import com.metamaxim.modelscope.callbacks.*;

4

5 public class MotivateInsert extends Behaviour {

6

7 public String getState() {

8

9 String x=this.getState("Decision");

10 if (x.equals("accepted")

11) return "motivate insert";

12 else return "other";

13 }

14

15

16 }

17

Fig. 6. Call-back function Motivate Insert for AND-composition of goals.

5 Discussion

5.1 Motivation Models built into business process contribute to

achievement of goals

It is known from the phycology studies that decisions of people are context-
dependent. The human-computer interface may provide the context that leads
to the choices that lead to goal states.

The want model can be transformed into human-computer interface of dif-
ferent sort: different visual elements, different colour or different position on the
screen or another output device. In the generic interface of the the Modelscope
tool, the wanted events are presented in green.

The visual elements of the human interface can be generated from the mo-
tivation model with the context related to the specified goals. The user of the
system gets extra context information to choose the right action.

5.2 Motivation Models built into business process contribute to

model reuse

Replacing one motivation model by another provides the reuse possibilities for
services with different goals. This reuse possibility is actual for businesses looking
for improvement of business processes built on web-services. Business models are
changed very often with the changing market situation. Changing the motivation
models gives to electronic business more flexibility.

5.3 Motivation Model built into business process relates the OMG

BMM and BPM

Relating the OMG Business Motivation and Business Process Models serves to
better understanding between managers making strategic decisions and require-
ment engineers preparing requirmetns for implementation.

In our approach the Ends of the Business Motivation model are presented as
motivating protocol machines. The Means are events included into motivating
protocol machines. they present the strategies. The Influences can be mod-
elled as protocol machines. The choice of the objects included into the model
as Influences is made on the basis of the Assessments about the impact of
Influences relevant for the business process.

5.4 Scalability of Motivation Modelling for Protocol Models

A motivation model is defined by analysis of the states of a protocol machine
that have transitions to the goal states and motivating actions leading to the goal
states. These procedure can be iterated in order to motivate events on the traces
leading to the goal states. As protocol models are abstract pieces of behaviour
and usually do not contain more than 5 − 9 states, constructing of motivation
models does not require complex iterative procedures and any computer help.

If a motivation model depends on the state of several protocol machines then
the ability to make abstractions with derived states allows joining the motivation
protocol machines to any number of protocol machines presenting the business
process in hand by writing a call-back function [6].

6 Conclusion and Future Work

This paper has presented an approach to motivation modelling. The approach is
based on an extra binary relation included into the process model. This relation
is used to identify the transitions in the process that lead to goal states.

The presented motivation model uses the semantics of Protocol Modelling
which combines the synchronous composition and concurrency and therefore
avoids the semantic mismatch between process modelling and goal modelling
techniques, identified by Letier at al. [5]. Synchronous goal models can be ren-
dered in protocol models. The motivation model relates the processes to system

goals and transforms them into objectives in terms of goal states in the business
process of services. Objectives are specific and measurable and motivation mod-
els can make services more effective by motivating actions leading to the goal
states. Reflecting the goals and objectives in the models is important for require-
ments engineering. New goals can challenge the business process. Such questions
as, if the process model supports some needed Means or if an End is no longer
relevant to the enterprise, are the elements of business process analysis [15].

The most interesting direction for future work is connecting web services
on the basis of matching motivation models. Motivation model can be used to
direct communication of collaborative services and to verify the realizability of
service collaboration. Creating collaborative businesses from web services with
matching motivation models promises the possibility of building more effective
e-businesses.

Acknowledgement. The author thanks A.McNeile for sharing ideas and fruit-
ful discussions related to the topic of the paper.

References

1. A. Alsumait, A. Seffah, and T. Radhakrishnan. Use Case Maps: A Vi-
sual Notation for Scenario-Based Requirements. 10th International Con-
ference on Human - Computer Interaction, http://wwwswt.informatik.uni-
rostock.de/deutsch/Veranstaltungen/HCI2003/, 2003.

2. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements ac-
quisition. Sci. Comput. Program., 20(1-2):3–50, 1993.

3. C. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.
4. ITU. Formal description techniques (FDT). User Requirements Notation Recom-

mendation Z.151 (11/08). http://www.itu.int/rec/T-REC-Z.151-200811-I/en.

5. E. Letier, J. Kramer, J. Magee, and S. Uchitel. Deriving event-based transition
systems from goal-oriented requirements models . Automated Software Engineering
archiveD, 15(2):1–22, 2008.

6. A. McNeile and E. Roubtsova. CSP parallel composition of aspect models.
AOM’08, pages 13–18, 2008.

7. A. McNeile and E. Roubtsova. Composition Semantics for Executable and Evolv-
able Behavioural Modeling in MDA. BM-MDA’09, pages 1–8, 2009.

8. A. McNeile and E. Roubtsova. Motivation and Guaranteed Completion in Work-
flow. submittered to SOSYM, 2011.

9. A. McNeile and N. Simons. http://www.metamaxim.com/.

10. A. McNeile and N. Simons. Protocol Modelling. A Modelling Approach that Sup-
ports Reusable Behavioural Abstractions. Software and System Modeling, 5(1):91–
107, 2006.

11. R. Milner. A Calculus of Communicating Systems. volume 92 of Lecture Notes in
Computer Science. Springer, 1980.

12. OMG. Unified Modeling Language: Superstructure version 2.1.1 formal/2007-02-
03. 2003.

13. OMG. Business Motivation Model. Version 1.1.formal/2010-05-01. 2010.

14. K. Pohl and C. Rupp. Requirements Engineering Fundamentals. Rocky Nook,
2011.

15. The Business Rules Group. The Business Motivation Model. Business Governance
in a Volatile World. 2010.

16. H. T. Van, A. van Lamsweerde, and C. P. Philippe Massonet. Goal-oriented re-
quirements animation. In RE, pages 218–228, 2004.

17. E. Yu. Modelling Strategic Relationships for Process Reengineering. Ph.D. Thesis.
Dept. of Computer Science, University of Toronto, 1995.

18. E. Yu, L. Liu, and Y. Li. Modelling Strategic Actor Relationships to Support
Intellectual Property Management. LNCS 2224 Spring Verlag. 20th International
Conference on Conceptual Modeling Yokohama, Japan, pages 164–178, 2001.

