
Reasoning on Models Combining Objects

and Aspects

Ella Roubtsova

Open University of the Netherlands
ella.roubtsova@ou.nl

Abstract. Modelling techniques are instruments for reality reflection.
Precision of reality reflection demands coexistence of different abstrac-
tion types like objects and aspects in one model. Experiments with ex-
tension of modelling techniques aimed to accommodate combinations of
objects and aspects in one specification have resulted in aspect-oriented
extensions of many conventional modelling semantics. It was found that
one of semantics called Protocol Modelling possess a very practical prop-
erty of local reasoning on objects and aspects about behaviour of the
whole model. In this paper the local reasoning property is defined in the
reasoning logic and this property is demonstrated with a case study in
the Protocol Modelling approach. Then the same case study is presented
in aspect-oriented extensions of modelling approaches based on the se-
mantics of contracts, sequence diagrams, workflows and state machines.
The case study shows that the extensions of conventional semantics do
not possess the local reasoning property. The semantic difference between
Protocol Modelling and the listed modelling semantics is discussed and
the useful semantic elements are recommended for new aspect-oriented
languages and middleware.

Keywords: Local Reasoning, Aspects, Protocol Models, Contracts,
Sequence Diagrams, Workflows, State Machines.

1 Introduction

Modelling abstractions were created to mirror systems and reflect the step-
wise way of collecting domain knowledge during requirements engineering. Us-
ing objects for system decomposition is a very common practice and it is well
known that separation of objects often causes crosscutting abstractions scattered
through system specification.

In order to implement a crosscutting abstraction a modular unit called aspect
was designed [7]. An aspect contains an advice in the form of a code presenting a
concern and pointcut designators being the instructions on where, when and how
to invoke the advice. The well defined places in the structure of a program or a
model where an advice should be attached were named join points. Programming
community had already accepted a join point model that used method calls as
join points and inserted advice before, after or around a method call [7]. This join
point model was implemented as various extensions of programming languages.

B. Shishkov (Ed.): BMSD 2011, LNBIP 109, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 E. Roubtsova

Such extensions gave a new task to compilers: to produce the code with aspects
woven in necessary places at the compilation time. This way an aspect is localized
only at the design time. In the code it remains scattered through the code.

Another branch of aspect-oriented programming developed middleware for
run-time aspect weaving without producing the code of the complete program.
The weaving program in the middleware registers aspects and their pointcut des-
ignators. At run time the weaving program is intercepting the method invoca-
tions and inserting aspects before, after or around specified method invocations.
The weaving programs implement sequential composition of method calls and
returns of the base program and the method calls and returns of aspects.

However, it was found that the aspect-oriented programming techniques built
on the existing aspect definition allow producing so-named invasive aspects [12].
Invasive aspects change the values of variables in other aspects and objects. In the
case of invasive aspects no guarantee can be given about preserving behaviour of
the base program after adding aspects and it is impossible to keep the reasoning
control over the evolving program.

At this point the modelling community decided to investigate the problem
and find the semantics that prevents constructing invasive aspects and guaran-
tees safe modelling and system construction. The idea was to recommend such
semantics for new aspect-oriented languages and weaving middleware.

The experiments were made in combining objects and aspects in different
modelling techniques. These experiments have shown that practical use of mod-
elling semantics combining different abstractions demands the convenient way
to reason on models. The most attractive reasoning is the local reasoning on
abstractions about behaviour of the whole system. Local reasoning makes the
reasoning simple and allows building scalable models of systems and at the end
the working systems.

The goal of this paper is to define local reasoning in reasoning logic and
demonstrate its presence and absence in different modelling semantics. In the
correspondence with the goal, section 2 reminds the reasoning logic and defines
the local reasoning in this logic. Section 3 presents models of the same case
study in the Protocol Modelling approach that possess the property of local
reasoning and in other aspect-oriented modelling approaches that do not have
such a property. The case study demonstrates the semantic elements that make
the local reasoning impossible. Section 4 summarizes the semantic elements of
Protocol Modelling that enable localization of reasoning.

2 Reasoning Logic and Local Reasoning

Let us consider a reasoning logic for state-transition systems: S = (s0, S, T),
where s0 is an initial state, S is a set of states and T is a set of transitions of
type (si, sj) and s0, si, sj ∈ S.

Let a state s ∈ S be defined on a set of variables V used to store data, a
set E variables used to temporally store events received from the environment
and IE variables used to temporary store internal events generated inside the

Reasoning on Models Combining Objects and Aspects 3

system S = V ∪ E ∪ IE; s = (v1,, vn, e1, ..., em, ie1, ...iek);n,m, k ∈ N. (An
event, an operation call or return can be stored in a data structure).

Let AP be a set of Atomic Propositions φ ∈ AP about values of variables
of a system V ∪ E ∪ IE. The examples of atomic propositions are “Amount =
2000”,“Event=Open”, “Password=Saved Password’ ’, etc.

A reasoning logic about a system is traditionally defined on a Kripke struc-
ture [1,21]: M = (M,R, μ), where (M,R) is a reachability graph of this system.
A node m ⊆M of a reachability graph is a state of the whole system. R is a set
of relations on states giving possible transitions, and μ :M → 2AP is a function
which assigns true values of propositions to each node of this reachability graph.

Function μ states that a predicate ψ is true in state s corresponding to node
n of a reachability graph, iff and only iff the state described by the proposition
is a sub-set of the set presented by the node of the reachability graph μ(φ) ⊆ n.

All variety of the reasoning statements is inductively defined as a set of pred-
icates built from atomic propositions called state formulas φ ∈ TP about states
in the reachability graph. We will analyse reasoning in different behaviour mod-
elling semantics and to cover them all will use a superset CTL* of computational
tree logic (CTL):

ψ ::= true |false |φ | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 |ψ1AUψ2 | ψ1EUψ2.

The interpretation of satisfaction relations in the reasoning logic has the reach-
ability graph semantics:

1. predicate φ is satisfied in all nodesm of the reachability graph where predicate
φ = true.
2. predicate ¬ψ is satisfied in all nodes where predicate ψ = false.
3. predicate ψ1 ∨ ψ2 is satisfied in all nodes where φ1 or ψ2 is satisfied.
4. predicate ψ1 ∧ ψ2 is satisfied in all nodes where both φ1 and ψ2 are satisfied.
5. predicate ψ1AUψ2 is satisfied in node m if for every path m0,m1, ... of the
reachability graph starting from node m = m0 there is node mi such that for
nodes m0, ...,mi−1 predicate ψ1 is true and for mi predicate ψ2 is true.
6. predicate ψ1EUψ2 is satisfied in node m if for some path m0,m1, ... of the
reachability graph starting from node m = m0 there is node mi such that for
node m0, ...,mi−1 predicate ψ1 is true and for mi predicate ψ2 is true.

There are two groups of reasoning statements: state predicates and path
predicates.

- State predicates can be formulated about one state, about a set of states and
all states. The state predicates are expressed using variables. The two special
forms of state variables are: STATE that presents the state from the semantic
point of view and EVENT that express the fact that an event of a given data
structure has been sent or received or an operation presented as a data structure
has been called or returned.
- Path predicates can be formulated about states that follow each other in an
existing path, about states that follow each other in a set of existing paths.

4 E. Roubtsova

The reasoning structure presented before is applied both to the whole program
or model and to an abstraction.

Definition 1. Local Reasoning Statement on an Abstraction. A reasoning state-
ment is local to an abstraction if it is formulated in terms of the states of this
abstraction and events or operation calls (returns) accepted by the abstraction
and describes the states or paths of the abstraction.

Definition 2. Local Reasoning Property of a System of Abstractions. A model/
system possesses the property of local reasoning if in any state any reasoning
statement about the model/system is a conjunction of finite number of local
reasoning statements of abstractions of this model/system and there are no other
reasoning statements about this model/system.

In another words, if a model/system possess the property of local reasoning,
then the analysis of every system property is reduced to analysis of a conjunction
of properties of a finite number of system abstractions.

3 Reasoning in Different Modelling Semantics

3.1 Case Study

The chosen case study is deliberately simple. It is designed to show the differ-
ence in composition of abstractions and the different reasoning possibilities in
modelling semantics.

Let us consider a customer and a bank account. A customer can be registered.
A registered customer can open an account and leave the bank. A customer can
be frozen and released from freezing. The customer with the status “frozen”
cannot leave the bank and open an account. An active account can be operated.
An active account can be closed. An account can be also frozen and released. If
an account is frozen then closing, depositing and withdrawing are impossible.

3.2 Protocol Modelling - Modelling with Local Reasoning

To date only one aspect-oriented modelling semantics, namely Protocol Mod-
elling, has proven the possession of property of local reasoning [14]. Let us present
the case study in Protocol Modelling and show what local reasoning means in
practice. Figure 1 shows the case study in Protocol Modelling semantics.

Structure. A protocol model of a system is a composition of protocol machines
Customer, Account, Freezing and Freeze Control. Protocol machines are partial
descriptions of behaviour classes. For example, the behaviour class Account is
described by three protocol machines: Account, Freezing and Freeze Control. Be-
haviour of class Customer is described by three protocol machines Customer,
Freezing and Freeze Control. Freezing and Freeze Control are aspects woven
into both behaviour classes Account and Customer. In order to generate own

Reasoning on Models Combining Objects and Aspects 5

B

INCLUDE

FreezingFreezing

Initialise
Freeze

Freeze

frozennot
frozen

Release

Deposit: Balance-Balance + Amount
Withdraw: Balance=Balance - Amount

Freeze Control

Operatefreeze
not
active

DERIVED STATE:
If State of
Subject. Freezing=“not frozen”
return "freeze not active";
else return “other’;

EVENT Open
Account: Account,
Account Number:
String

EVENT Close
Account: Account

EVENT Withdraw
Account: Account,
Amount: Currency

EVENT Deposit
Account: Account,
Amount: Currency

Account

Close
closedactive

Deposit,
Withdraw,

Open

Balance=0.0

EVENT Register
Customer:Customer

EVENT Leave
Customer: Customer

EVENT Freeze
Subject: Freezing

EVENT Release
Subject: Freezing

GENERIC Initialise Freeze
MATCHES
Open, Register

GENERIC Operate
MATCHES Deposit,
Withdraw, Close,
Open, Leave

Customer
Register Leave

leftregistered

Open,

INCLUDE

INCLUDE

INCLUDE

other

Fig. 1. Protocol Model

instances of Freezing and Freeze Control for each object of different behaviour
classes, behaviours Freezing and Freeze Control are included into those ob-
jects. The INCLUDE-relation, depicted as a half-dashed triangle, gives to Pro-
tocol Models the expressiveness of multiple inheritance. Each object has its
object identifier and behaviours of aspects are instantiated with instantiation of
objects.

Events.A protocolmachine has its own alphabet of recognized events. Event types
Open, Close, Deposit, Withdraw, Register, Leave, Freeze, Release are presented as
data structures in Figure 1. An event instance contains values of the attributes.
Event alphabets of protocol machines can have a not empty intersection.

6 E. Roubtsova

For example, the intersection of alphabets of protocol machinesAccount and Cus-
tomer is event Open. It is used for synchronization of an instance of a Customer
and an instance of an Account.

State. A protocol machine has its local state. The intersection of local states
of protocol machines is always empty. The local state of a protocol machine is
presented as a set of attributes and special enumerated attribute STATE. For
example, the protocol machine Account has attributes Account Number and Bal-
ance and the attribute STATE with values @new|open|closed.

Behaviour Semantics of Event Refusal. A protocol machine presents a system
that communicates with its environment. Events are presented to the model by
the environment. Being in a suitable state, a protocol machine accepts the pre-
sented event, otherwise it refuses the event. The states accepting an event have
an outgoing arc labeled by this event. A transition is depicted as an arc con-
necting two states (state, event, state). The behaviour of a protocol machine is
a set of sequences of accepted events. The sequences of transitions of a protocol
machine can be combined into a computation tree and their properties can be
described with path predicates.

CSP Parallel Composition. Behaviour of a protocol model is a composition of
behaviours of its protocol machines. The composition operator for protocol ma-
chines is a variant of the parallel composition operator defined by Hoare [9] in
his process algebra Communication of Sequential Processes (CSP). This oper-
ator was extended by McNeile and Simons [16] for machines and events with
data. Protocol machines use the CSP parallel composition algorithm to form
more complex protocol machines. This is the description of the CSP parallel
composition algorithm:

- A protocol model handles one event at a time and reaches a well defined qui-
escent state before handling the next event;
- If all machines of the protocol model, having an event in their alphabet, accept
the event, the protocol model accepts it;
- If at least one of protocol machines, having this event in its alphabet, refuses
the event, the composition of machines refuses it.

Derived States. A protocol machine can have a state function to derive its states
from states of other protocol machines. Derived states are states that are cal-
culated from the state of other protocol machines. For example, the protocol
machine Freeze Control derives its state from the state of machine Freezing us-
ing its state function. The state function associated with the protocol machine
results in state ’freeze not active’ or state ’other’ (Figure 1).

The derived states should not be topologically connected with other states.
The arc of Freeze Control labeled with Operate does not need the right-end node.
The arc means that Freeze Control accepts event Operate. The output state is

Reasoning on Models Combining Objects and Aspects 7

defined by the transitions of stored state protocol machines labeled with event
Operate or events matching with it.

Protocol Modelling distinguishes protocol machines with derived state from
protocol machines with stored states in order to simplify modelling.

Protocol Machines with derived state can be seen as spectative aspects. They
observe the state of other protocol machines, calculate state from them and al-
low or forbid some traces of the system [17].

Execution and Reasoning. The Protocol Model is directly executed in the Mod-
elscope tool [15] that provides a generic interface for execution. All possible
events are visible at any step of the execution. All states may be made visible
during the execution. As any state variables and any attribute is local to a pro-
tocol machine, there is a local reasoning predicate about every state change. Let
us go through a sequence of model execution and reasoning.

1. For a new Customers the only available event is Register.
The reasoning is local to the object Customer :

((Customer = @new)EU(ExistsUntil)(Event = Register)).

2. If event Register takes place, then Customer transits into state ’registered’
and instances of two protocol machines Freezing and Freeze Control are
created for the Customer.

Freezing is instantiated in the state ’not frozen’ and Freeze Control de-
rives its state ’freeze not active’ from Freezing .

Reasoning statements are local to Customer and Freezing:

((Event = Register)EU(Customer = registered)),

((Freezing = @new)EU(Event = InitialiseFreeze)),

((Event = InitialiseFreeze)EU(Freezing = not frozen)),

StateFunction : FreezeControl(Freezing = not frozen) = freeze not active,

Generic : InitializeFreezeMATCHESRegister.

After application of the State Function and substitution of the Generic each
of three reasoning statements as well as the conjunction of these local rea-
soning statements is the true reasoning statement about the behaviour of
the whole model at this step.

3. Next, eventCustomer.Freeze becomes possible thanks to the Freezing aspect:

((Freezing = notfrozen)EU(Event = Freeze)).

4. Than event Open becomes possible thanks to Customer and Freeze Control :

((Customer = registered)EU(Event = Open));

((FreezeControl = freeze not active)EU(Event = Operate));

Generic : OperateMATCHES Open.

8 E. Roubtsova

5. We also can reason that event Register for a chosen Customer is impossible
because the local statements on Customer

((Customer = registered)¬EU(not exists)(Event = Register)).

We can continue the execution and reasoning. Any state change can be explained
by a conjunction of local reasoning statements on a limited number of abstrac-
tions. The composed model does not have states and paths properties of which
cannot be described as a conjunction of local properties of a final number of
composed protocol machines.

If a large number of instances of abstractions is involved in a reasoning, then
a Protocol Machine with a derived state is created. It derives its states from all
instances and reasoning remains local to this Protocol Machine with the derived
states. For example, if event Leave for Customer would be possible only if all
corresponding Accounts are closed, then we would add a protocol machine Close
Control with the derived state ’All Accounts of Customer are closed’ and al-
low acceptance of event Leave only in this state. Modelscope provides SELECT
functions [15] to select instances and derive states from the selected instances of
different abstractions.

Join Points. A join point in Protocol Modelling is a set of events that can be
seen identical to each other at the abstraction level of a particular protocol ma-
chine. For example, the Freezing abstraction does not see the difference between
events Open and Register and defines join point GENERIC Initialise Freeze that
matches each of these events. The Freeze Control abstraction does not separate
events Deposit, Withdraw, Leave and Close and defines GENERIC Operate that
matches each of those events.

The proof presented in [14] shows that the CSP parallel composition of proto-
col machines guarantees preservation of ordering of traces of aspects and objects
in the whole specification. This property is called observational consistency [6].
In combination with localization of state and the prohibition for protocol ma-
chines to change state of each other, the observational consistency guarantees
the property of local reasoning of protocol models.

Small and deterministic protocol machines are verified or tested by direct ex-
ecution. Any new functionality, even the crosscutting one, is localized in a new
protocol machine and synchronized with existing protocol machines. New proto-
col machines cannot cause any damage to behaviour of other protocol machines
except possible forbidding of some traces. But this is directly identified as the
conjunction of the reasoning statements local to this new forbidding protocol
machine and the local reasoning statements of protocol machines allowing this
trace. For example, the conjunction of reasoning statements of the Customer
and the Freeze Control in state ’other’:

((Customer = registered)EU(Event = Open))AND

((FreezeControl = other)¬EU(Event = Operate));

GENERIC : OperateMATCHESOpen.

Reasoning on Models Combining Objects and Aspects 9

results is the forbidding statement

((FreezeControl = other)¬EU(Event = Open)).

3.3 Visual Contract Language

In this section we model our case study in the contract-based semantics called
Visual Contract language (VCL) [2]. VCL explores the declarative way of aspect
specification based on composition of sets of operations, attributes, classes and
packages. In the VCL specification (Figure 2) classes Customer and Account are
defined as sets of attributes and operations. Operations are depicted as hexagons.

A contract for a class is a set of its operations. Each operation has a cor-
responding diagram which specifies the operation name, its input (?) and out-
put (!), the pre-conditions in the left hand side field and the post-conditions in
the right hand side field. For example, the input of operation Open is an Ac-
count Number? String and the output is the a! Account. The post-condition is
Balance=0 AND Account Number=Account Number. The empty pre-condition
field means that there are no restrictions on the values of variables for this oper-
ation. (If we define variable STATE for the Account, than the precondition will
be (STATE�=Closed).

Classes can have relations. For example, ’Customer opens Account’.
Aspects are specified as classes. Figure 2 shows aspect Freezing. The function-

ality of Freeze Control is specified inside Freezing as Freeze Control functionality
does not contain any own operations.

Classes can be combined into packages. A class and a package may have invari-
ants that specify the types, or relations that are not changed during the object
life cycle. A package may have operations that are specified as join interfaces
(JI). Packages can join on join interfaces. Figure 2 shows how aspect Freezing
is woven into objects Account and Customer. Package AccountJI1 contains join
interface Open used for weaving operation Account.Freezing.Initialise Freezing.
Package AccountJI2 contains join interface Withdraw, Deposit, Close. Each of
these operations is used for weaving of Account.Freezing.Get State Freezing.

There are some general features of the contract semantics used by VCL that
should be mentioned.

– The units of behaviour in contracts are operations. An operation itself has
a body that may change both the state of its own object and the state of
other objects. Pre- and post-conditions are even able to specify the changes
of variables of other objects. Such operations cannot be elements of local
behaviour of any object or aspect.

– A contract does not define what happens with an operation call if the pre-
condition is not satisfied [18]:“If a precondition is violated, the effect of the
section of code becomes undefined and thus may or may not carry out its
intended work.” Operation calls are not refused. Usually an operation call is
kept (somewhere in a stack) waiting for the preconditions to become true.
The absence of the refuse semantics in contracts makes the CSP synchro-
nization impossible.

10 E. Roubtsova

Fig. 2. VCL Model

Reasoning on Models Combining Objects and Aspects 11

From carefully specified contacts, having the Z-semantics, it is possible to
generate a computation graph that shows the behaviour of the system but
only if events happen when they are expected to happen.

– Operations are called one after another even all of them have true precondi-
tions. The operation calls form sequences that can be sequentially composed
or inserted between an operation call and return. For example, after Reg-
ister(Customer Name), Initialise.Customer.Freezing can be called and then
operation Register can proceed to the completion. This is the aspect-oriented
’around invoke’ technique. Because of the sequential way of weaving, the be-
haviour of the whole model (and its computation graph) will always contain
states that cannot be composed from the states of the abstractions. It is im-
possible to reason about such new states using reasoning statements defined
on the states of abstractions.

For example, if ((Customer.Freezing = other)¬EU(Event = Open)) and
event Open is called, it will not be refused immediately as the state of Cus-
tomer.Freezing has to be checked. There will be a state after Customer.Open
before call Customer.Get State Freezing where

((Customer.Freezing = other)¬EU(Event = Open)) is false.

– In order to check a state of another package, the abstraction has to call
operation Get State. This technique does not allow abstraction A to have
derived states corresponding to the states of abstraction B. During the time
interval between the call of Get State and its return the state of abstraction
B can be changed. Therefore, quantification on states and using derived
states as join points is impossible.

We can now summarize, that three semantic elements: (1) using operations that
can change the state of other objects, (2) absence of operation synchronization
and (3) sequential composition of operations, - produce in the whole model
extra states and paths that cannot be described as composition of states of local
abstractions. The whole model needs global reasoning and complete reachability
graph has to be analyzed using theorem proving techniques.

3.4 Sequence Diagrams with Joint Point Diagrams

A set of sequence diagrams with conventional semantics is aimed to present only
a part of possible sequences of system behaviour. Sequence diagrams illustrate
behaviour of programs and therefore use operation calls and returns as elements
of behaviour. The composition techniques of sequence diagrams are restricted to
sequential composition, alternatives, cycles and insertion of sequences of opera-
tions calls and returns.

For Aspect-Oriented Modelling (AOM) the conventional sequence diagrams
were extended with Join Point Designation Diagrams (JPDDs) [23]. Conven-
tional sequence diagrams usually specify sequences to the completion of a use
case. Sequence diagrams with JPDDs specify sequences of base objects as well
as fragments of sequences of repeated aspects and join points.

12 E. Roubtsova

Fig. 3. JPDD diagrams

Reasoning on Models Combining Objects and Aspects 13

Figure 3 specifies JPDDs for our case study. The figure does not show the
sequences of the base objects Customer and Account but specifies join points
and advice fragments. JPDDs (1) and (3) are modelling means to graphically
represent join point queries on Customer and Account. They use lists of opera-
tions that serve as join points. Diagram 2 presents the advice for initializing of
aspect Freezing and diagrams 4 and 5 specify two different advice traces of the
aspect Freeze Control.

In reality the set of sequences is infinite and sequence diagrams with JPDDs
do not present the complete system behaviour to reason on it. However, even
when all possible sequences are specified for a simple model then the sequences
are combined into a computation graph using the same sequential composition
technique as in contracts. Sequence diagrams use all three semantic elements
that make local reasoning impossible.

Several approaches such as Theme [3], GrACE (Graph-based Adaptation,
Configuration and Evolution [4], RAM (Reusable Aspect Models) [11] use JPDDs
in combination with class diagrams. All approaches use global reasoning tech-
niques [3,4,11].

3.5 Workflows as Aspect-Oriented Notations

Activity and workflow based approaches are aimed to specify complete system
behaviour that can be analyzed and verified against required properties. The
workflows are often used in AOM approaches as integration means to combine
specified aspects. For example, the Theme approach [5] uses an activity diagram
as an integration view. There are also AOM approaches that define fragments
of workflows and compose these fragments into the complete workflow. An ex-
ample is the approach called Activity moDel supOrting oRchestration Evolution
(Adore) [19].

Figure 4 renders our case study in Adore. Adore specifies a computation
graph (a process) combining several basic abstractions. In our case it combines
behaviours of Customer and Account in the workflow. Repeated partial be-
haviours of abstractions are specified as workflow fragments (or aspects). For
example, behaviours Freezing, Freeze Control and Leaving are specified as frag-
ments. Each fragment corresponds to a specific aspect and it is used as a partial
point of view on its target. A fragment contains special activities, called prede-
cessors P, successors S and hooks (assimilated as a Proceed in AspectJ). The
hook predecessors (P) are the immediate predecessors of the first activity in the
target block, and the hook successors (S) are the immediate successors of the
last activity in the block.

The binding or weaving instructions assigning predecessors and successors are
specified in a separate file. For example, the fragment P3;S3 of Freeze Control
from Figure 4 can be bound as follows

P3 = i : Withdraw;S3 = r : Withdraw,

14 E. Roubtsova

Fig. 4. ADORE Workflow diagram

where i is the invocation and r is the return of operation Withdraw. The hook
is the sequence of activities

hook = i : GetStateFreezing; r : GetStateFreazing = notfrozen.

The complete orchestration is generated from fragments according to the binding
instructions.

As with such an approach there is no guarantee that local properties of aspects
are propagated to the complete orchestration, the side effects of separating of
concerns and composition in Adore are formulated as rules. The rule violation
not always signals a mistake. It may indicate a ”bad-smell”, like, for example,
the non-determinism caused by two conditions evaluated to false at the same
time. The ”bad-smells” are analyzed by the designer of the orchestration.

Reasoning on Models Combining Objects and Aspects 15

All workflow fragments are combined at design or runtime into a computation
graph. This means that the behaviour composition technique is the same as in
contract-based and sequences based notations.

It is possible to synchronize operation calls and returns in workflows using a
synchronization construction. It is also possible to work on the level of events
and do not separate calls and returns. However, one semantic feature makes this
synchronization different from the CSP parallel composition used in Protocol
Modelling. Namely, workflows do not have the semantics of event refusal. At
any state several events may happen and the events are kept in bags or stack
structures. The event may wait until the model transits to the state where this
event is accepted. The computation graph of workflows depends on the state
of those stacks or bags and the system has states that cannot be described as
conjunction of states of system abstractions. Such a composition semantics does
not leave any other possibility for reasoning than the global reachability analysis.

3.6 Aspect-Oriented Extension of State Machines

A UML Behaviour State Machines (BSM) [20] usually presents behaviour of one
class. There are several approaches trying to extend BSM to enable several BSMs
for one class. Mahoney et al. [13] suggested to exploit the AND-composition of
several independent (orthogonal) statecharts defined by D.Harel [8]. ”The key
feature of orthogonal statecharts is that events from every composed statechart
are broadcast to all others. Therefore an event can cause transitions in two or
more orthogonal statecharts simultaneously” [13].

The ideas proposed by Mahoney et al. were further developed in the approach
called High-Level Aspects (HiLA) [10]. HiLA modifies the semantics of BSM
allowing classifiers to apply additional or alternative behaviour. Aspects extend
the behaviour specified for classes.

The basic static structure usually contains one or more classes. Each base
state machine is attached to one of these classes and specifies its behaviour.
Figure 5 shows two state machines Customer and Account that look similar to
protocol machines, but have different semantics.

– The first difference is in the semantics of labels on the arcs. A label of a
protocol machine presents an event but a label of a state machine presents
some state information before and after the event that run to completion:
[precondition] event/ [postcondition][20].

– The second difference is the absence of event refusal. Events coming from
the environment are kept in a queue or a stack of active events [20]. There
are complex rules for handling or keeping events in the queue until the state
is appropriate for their handling.

The HiLA approach does not change both mentioned semantic features but of-
fers the patterns of aspect weaving. High-level aspects apply to state machines
and specify additional or alternative behaviour to be executed at certain “ap-
propriate” points in time of the base machines execution.

16 E. Roubtsova

Fig. 5. HiLA State Machines

HiLA introduces patterns for specification of dynamic aspects. Any pattern
has an Aspect Name, a Pattern Type, a Transformation Point and a Transfor-
mation Advice.

In Figure 5 we use pattern of type “WhilstOnGoTo” to specify aspects of
our case study.

For example, the transformation point of aspect Freezing shows that the event
Initilise Freezing happens in two situations (1)Whilst Customer is in the initial
state, shown by the black dot, and when event Register takes place and becomes
the trigger and (2) Whilst Account is in the initial state and event Open becomes
the trigger. A pattern Whilst always has a specification of a state and an anno-
tation Trigger = e. Conceptually it selects the compound transition from State
with Trigger e, but if this transition does not exist, it is created [10,24]. This
means that an aspect is added while an action is in the stack of active actions.

As the authors of the approach indicate [10,24], weaving of aspects into basis
BSM results in another UML state machine which is analyzed using the model
checking component of Hugo/RT model checking tools. Hugo/RT translates the
state machine and the assertions into the input language of a back-end model
checker SPIN. SPIN then is used to verify the given properties presented in
Linear Temporal Logic for global analysis of the model behaviour.

Reasoning on Models Combining Objects and Aspects 17

4 Conclusion

This paper presents a survey of modelling semantics designed to accommodate
aspects and objects in one model. The need of scalable models and reasoning
control over complex models shows that accommodation of different abstraction
types in one model demands more than just instructions on where, when and
how to invoke advice of aspects. It is desired that modelling semantics possess
the property of local reasoning on abstractions about behaviour of the whole
model to reduce the analysis of any whole model property to the analysis of a
finite number of local properties of model abstractions.

In this paper we have given the definition of local reasoning in the reasoning
logic. We have applied the definition to show that the models built in many
modelling semantics do not possess local reasoning property as they have extra
states and paths that cannot be described as conjunction of states and paths of
their abstractions.

Using the definition we have shown that Protocol Models possess local reason-
ing property. Other approaches may use semantic findings of Protocol Modelling
as a notation independent basis for combining objects and aspects. The semantic
elements that are needed for local reasoning are the following:

– considering events as instances of data structures but not as operations and
this way avoiding state transformation defined inside operation bodies;

– using semantics of event refusal allowing synchronization of behaviour ab-
stractions and the CSP parallel composition;

– handing one event at a time until the system stays in a quiescent state;
– allowing abstractions to transform their own state and read but not modify

the state of other abstractions;
– allowing abstractions to derive their state from the state of other abstrac-

tions.
– mapping events to an alias if events are not differentiated at the level of a

particular abstraction.

As further experiments show [22], with involving yet other abstractions into
design, a combination of composition techniques might be necessary. The the-
ory of system modelling has developed many composition techniques, but their
combinations have not been investigated yet and have not been implemented in
suitable modelling and programming tools. As the systems become more com-
plex and use abstractions with different communication techniques, the practical
modelling approaches, using combination of composition techniques and provid-
ing local reasoning when possible, are yet to be found and implemented.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information
and Computation 104(1), 2–34 (1993)

2. Amálio, N., Kelsen, P.: VCL, a Visual Language for Modelling Software Systems
Formally. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010.
LNCS, vol. 6170, pp. 282–284. Springer, Heidelberg (2010)

18 E. Roubtsova

3. Baniassad, E., Clarke, S.: Theme: An Approach for Aspect-Oriented Analysis and
Design. In: Proceedings of the 26th International Conference on Software Engi-
neering, ICSE 2004, pp. 158–167. IEEE (2004)

4. Ciraci, S., Havinga, W.K., Akşit, M., Bockisch, C.M., van den Broek, P.M.: A
Graph-Based Aspect Interference Detection Approach for UML-Based Aspect-
Oriented Models. Technical Report TR-CTIT-09-39, Enschede (September 2009)

5. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Ap-
proach. Addison Wesley (2005)

6. Ebert, J., Engels, G.: Observable or invocable behaviour-you have to choose. Tech-
nical report. Universität Koblenz, Koblenz, Germany (1994)

7. Filman, R., Elrad, T., Clarke, S., Akşit, M.: Aspect-Oriented Software Develop-
ment. Addison-Wesley (2004)

8. Harel, D., Gery, E.: Executable Object Modelling with Statecharts. IEEE Com-
puter 30(7), 31–42 (1997)

9. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International (1985)
10. Hölzl, M.M., Knapp, A., Zhang, G.: Modeling the Car Crash Crisis Management

System Using HiLA. T. Aspect-Oriented Software Development 7, 234–271 (2010)
11. Kienzle, J., Al Abed, W., Klein, J.: Aspect-oriented Multi-view Modeling. In: Pro-

ceedings of the International Conference on Aspect-Oriented Software Develop-
ment, AOSD 2009, Charlottesville, Virginia, USA, pp. 87–98 (2009)

12. Katz, S.: Aspect Categories and Classes of Temporal Properties. In: Rashid, A.,
Aksit, M. (eds.) Transactions on AOSD I. LNCS, vol. 3880, pp. 106–134. Springer,
Heidelberg (2006)

13. Mahoney, M., Bader, A., Elrad, T., Aldawud, O.: Using Aspects to Abstract and
Modularize Statecharts. In: The 5th Aspect-Oriented Modeling Workshop in Con-
junction with UML 2004 (2004)

14. McNeile, A., Roubtsova, E.: CSP parallel composition of aspect models. In: AOM
2008: Proceedings of the 2008 AOSD Workshop on Aspect-Oriented Modeling, pp.
13–18 (2008)

15. McNeile, A., Simons, N.: http://www.metamaxim.com/
16. McNeile, A., Simons, N.: State Machines as Mixins. Journal of Object Technol-

ogy 2(6), 85–101 (2003)
17. McNeile, A., Simons, N.: Protocol Modelling. A Modelling Approach that Supports

Reusable Behavioural Abstractions. Software and System Modeling 5(1), 91–107
(2006)

18. Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1997)
19. Mosser, S., Blay-Fornarino, M., France, R.: Workflow Design Using Fragment Com-

position - Crisis Management System Design through ADORE. T. Aspect-Oriented
Software Development 7, 200–233 (2010)

20. OMG. Unified Modeling Language: Superstructure version 2.1.1 formal/2007-02-03
(2003)

21. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. Founda-
tions of Computer Csience (FOCS 1977), Providence, RI, USA, pp. 46–57 (1977)

22. Roubtsova, E., McNeile, A.: Abstractions, Composition and Reasoning. In: AOM
2009: Proceedings of the 13th Workshop on Aspect-Oriented Modeling, Char-
lottesville, Virginia, USA (2009)

23. Stein, D., Hanenberg, S., Unland, R.: Visualizing Join Point Selections Using
Interaction-Based vs. State-Based Notations Exemplified With Help of Business
Rules. In: EMISA 2005, pp. 94–107 (2005)

24. Zhang, G., Hölzl, M.: HiLA:High-Level Aspects for UMLStateMachines. In: Ghosh,
S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 104–118. Springer, Heidelberg (2010)

http://www.metamaxim.com/

	Reasoning on Models Combining Objects and Aspects
	Introduction
	Reasoning Logic and Local Reasoning
	Reasoning in Different Modelling Semantics
	Case Study
	Protocol Modelling - Modelling with Local Reasoning
	Visual Contract Language
	Sequence Diagrams with Joint Point Diagrams
	Workflows as Aspect-Oriented Notations
	Aspect-Oriented Extension of State Machines

	Conclusion

