
Behavioural Model for a Business Rules Based Approach
to Model Services

Ella Roubtsova, Stef Joosten, Lex Wedemeijer
Open University of the Netherlands

Postbox 2960, 6401DL Heerlen. The Netherlands
ella.roubtsova@ou.nl;stef.joosten@ou.nl; lex.wedemeijer@ou.nl

ABSTRACT
Service-oriented systems are seen as an IT trend impacting
businesses. Successful implementation and maintenance of
such systems demands their modelling. However most mod-
ern modelling approaches do not have the necessary service
abstractions and suitable composition techniques for inte-
gration of behaviour of services.

The contribution of this paper is the analysis of the be-
havioural semantics of a declarative, business rules based
approach called Ampersand and the identification of the se-
mantic extensions needed for modelling of services and their
composition.

1. INTRODUCTION
Service-oriented systems are seen as an IT trend impact-

ing businesses. Successful implementation and maintenance
of such systems demands their modelling. The danger of the
moment is that most modern modelling approaches do not
have the necessary service abstractions and suitable compo-
sition techniques for integration of behaviour of services.

A service is characterized by two main dynamic features:

• Firstly, a service is a module that is able to appear and
disappear at the run time without changing the be-
haviour of other system modules implemented locally
with it. This feature is sometimes called volatility of
services [25]. It is also related to service plurality and
ability to replace each other.

• Secondly, a service communicates by message passing
with other distributed services [18].

Modelling of these features means modelling of service in-
stances and their composition during their execution and
interaction.

It has been shown in [2] that many of operational ap-
proaches (Statecharts [6], Coloured Petri Nets [14; 15], UML
Behavioural State Machines (BSM) [21], Protocol State Ma-
chines (PSM) [21] and activity diagrams [21]) need semantic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BM-FA Workshop 15 June 2010 Paris, France.
Copyright c© 2010 ACM 978-1-60558-961-9/10/06 ...$10.00.

extensions in order to support modelling of service-oriented
systems.

The question is whether the declarative approaches are
able to model the mentioned features of services in service-
oriented systems. The declarative approaches: Z [12], the
UML’s Object Constraint Language (OCL)[20], Alloy [7; 8],
declare behaviour as sets of observable or internal opera-
tions. Sets can be easily composed and decomposed. Com-
paring with the operational models that may contain artifi-
cial connections and have a flavor of bureaucracy, the declar-
ative models do not have artificial connections and may be
more suitable for modelling of service-oriented businesses
with their tendency to adhocracy [11].

In order to give an answer to the question whether the
semantics of declarative approaches allows for the adequate
modelling of service-oriented systems we describe a beha-
vioural semantics of a declarative approach called Amper-
sand [26]. As many other declarative approaches [7; 16; 8;
27] Ampersand uses relational logic. The specifics of this ap-
proach is the interpretation of expressions in relational logic
as business rules. We analyse the behavioural semantics of
Ampersand and identify the semantic extensions needed for
modelling of services and their integration. The contribution
of this paper is the analysis of the behavioural semantics of
the declarative approach Ampersand and the identification
of the semantic extensions needed for specification of service-
oriented systems.

The paper is organized as follows.
Section 2 defines the static model of the Ampersand ap-
proach illustrated by an example.
Section 3 describes the behavioural model of Ampersand and
estimates its ability to model services.
Section 4 proposes the semantic changes of the behavioral
model in Ampersand towards modelling of interactive ser-
vices and their composition.
Section 5 concludes the paper.

2. THE AMPERSAND APPROACH
Among different approaches to formalization of business

rules the Ampersand approach uses the relational logic [19]
and the formalization of business rules as expressions defined
on relations of objects [26]1.

1The Business Rules Group defines ”a business rule as a
statement that defines or constrains some aspect of the
business” [1; 4]. Business rules are classified as definitions
of business terms, facts relating terms to each other, con-
straints and derivations [13; 22]

2.1 Terminology
The vocabulary of relational logic consists of ”two classes

of words - variables and constants.... Constants (variables)
are further subdivided into object, relation and function con-
stants (variables)”[19]. These constants and variables are
used to form complex expressions.

There are three types of sentences in Relational Logic: re-
lational, logical and quantified. A relational sentence forms
a relation constant, for example, r(a, b), where a and b are
parameters. A logical sentence is an expression on rela-
tional sentences that uses negations, conjunctions, disjunc-
tions, implications, reductions. subset operations and equiv-
alences [19]. For example, r ⊆ r1. Quantified sentences are
formed from a logical sentence and a variable-quantifier that
restricts the set where the logical sentence is true. There are
two types of quantified sentences. A universally quantified
sentence expresses that all objects of have certain property.
An existentially quantified sentence expresses that some ob-
ject has a certain properly.

2.2 Syntax of the Language in Ampersand
The language of the Ampersand approach uses object vari-

ables called Concepts, variables called Relations defined on
Concepts, and expressions called Business Rules defined on
Relations.

〈Relation Description〉 ::=
〈Relation〉 ” :: ” 〈ConceptA〉 ” ∗ ” 〈ConceptB〉
[UNI|TOT |INJ |SUR]
= [(”ElementConceptA”, ”ElementConceptB ”),,].

The properties of relations can be presented as quantified
expressions, however in Ampersand they are declared as
[UNI|TOT |INJ |SUR] or expressed as business rules:
UNI- univalent. Each element of domain of 〈ConceptA〉 cor-
responds to at most one element of domain of 〈ConceptB〉.
TOT - total. Each element of domain of 〈ConceptA〉 corre-
sponds to at least one element of domain of 〈ConceptB〉.
INJ -injective. Each element of element of domain of
〈ConceptB〉 corresponds at most one element of domain of
〈ConceptA〉.
SUR - surjective. Each element of domain of 〈ConceptB〉
corresponds to at least one element of domain of 〈ConceptA〉.

Business Rules in Ampersand are logical expressions of a
predefined structure:

〈Business Rule〉 ::=
〈Expression〉〈SetOperator〉〈Expression〉
〈SetOperator〉 :: ” = ”|”!− ”|”− |””
〈Expression〉 :: 〈Expression〉”̃ ”|
〈Expression〉 :: ”− ”〈Expression〉|
〈Expression〉” ∧ ”〈Expression〉|
〈Expression〉” ∨ ”〈Expression〉|
〈Expression〉”; ”〈Expression〉|
〈Relation〉|
〈Concept〉 ∗ 〈Concept〉|
IdentityRelation[〈Concept〉]
where if
〈Relation1〉 ::= ¬〈Relation2〉 | 〈Relation2〉 ∧ 〈Relation3〉|
〈Relation2〉 ∨ 〈Relation3〉| 〈Relation4〉; 〈Relation5〉
then
〈Relation1〉 :: 〈ConceptA〉” ∗ ”〈ConceptB〉

〈Relation2〉 :: 〈ConceptA〉” ∗ ”〈ConceptB〉
〈Relation〉3 :: 〈ConceptA〉” ∗ ”〈ConceptB〉
〈Relation4〉 :: 〈ConceptA〉” ∗ ”〈ConceptC〉
〈Relation5〉 :: 〈ConceptC〉” ∗ ”〈ConceptB〉.

Symbol ”|−” means ⊆ Symbol ”−| ” means ⊇.

The properties of a relation

〈Relation〉 :: 〈ConceptA〉” ∗ ”〈ConceptB〉
can be expressed as following business rules
[UNI] ::=

〈Relation〉”̃ ” ; 〈Relation〉”| − ”IdentityRelation[〈ConceptB〉]
[TOT] ::=

〈IdentityRelation[〈ConceptA]〉”| − ”Relation〉; 〈Relation〉”̃ ”

[UNI, TOT] ::=

〈Relation〉”̃ ” ; 〈Relation〉” = ”IdentityRelation[〈ConceptB〉]
[UNJ] ::=

〈Relation〉; 〈Relation〉”̃ ” ”| − ”IdentityRelation[〈ConceptA〉]
[SUR] ::=

IdentityRelation[〈ConceptB〉]”| − ”〈Relation〉”̃ ” ”; 〈Relation〉

2.3 Example of a static model in Ampersand
Let us model an order management system. The require-

ments for this system are the following:
An order containing an item and addressed to a provider

is issued by a client. The order is accepted by the provider if
the account of the client is not overdrawn and if the item are
in the stock of the provider. A client has only one known
bank account. The provider of an accepted order sends a
bill to the client. When the client pais the bill, the order is
delivered to the client.

The listing of a static model of an order management sys-
tem in Ampersand is presented below2 .

-1-CONTEXT Trading

-2-

-3-PATTERN OrderManagement

-4-

-5-isIssued ::Order*Client [UNI,TOT,SUR]

=[("1","Company A")].

-6-

-7-

-8-isAccepted::Order*Provider [UNI,TOT].

-9-

-10-hasAccount ::Client*Account [UNI,TOT,INJ]

=[("Company A","12345")].

-11-notOverdrawn ::Account*NotOverdrawn[UNI,INJ,SUR].

-12-isAddressed:: Order*Provider [UNI, TOT].

-13-isChecked::NotOverdrawn*Provider [UNI, TOT,INJ].

-14-contains ::Order*Item [UNI,TOT]=[("1","Software X")].

-15-hasInStock :: Item*Provider [TOT]

=[("Software X","Company P")].

-16-isAccepted -| isAddressed

-17-isAccepted-| contains; hasInStock

-18-isAccepted-|

isIssued;hasAccount;notOverdrawn;isChecked

-19-

-20-

-21-makeBill:: Provider*Bill [INJ,SUR].

2Dashed numbers represent lines of the listing.

-22-billFor:: Bill*Order [UNI,TOT, INJ].

-23-billTo::Bill*Client [UNI].

-24-makeBill;billTo -| isAccepted~;isIssued

-25-

-26-isPaid:: Bill*Client [UNI,TOT].

-27-isPaid-| billFor; isIssued
∧

billTo

-28-

-29-

-30-isDelivered:: Order*Client [UNI].

-31-isDelivered -| isAccepted;makeBill;isPaid

-32-

-33-ENDPATTERN

-34-ENDCONTEXT

Figure 1: Static Model of a order-management sys-
tem

• The names of concepts start with a capital letter: Client,
Order, Provider etc..

• The identifiers of relations start with a small letter:
isIssued, hasAccount,isAccepted etc.

• The business rules are expressed as properties of rela-
tions INI, TOT.etc or as expressions on relations.

Figure 1 shows the model graphically.

2.4 Semantics of Ampersand Models
The semantics of the Relational Logic is based on concep-

tualization of the world. The choice of the right conceptu-
alization depend on the goal of modelling.

A semantics of a language based on Relational Logic is
an interpretation of constants of the language as elements
of the conceptualization. Each object constant is mapped
into an element in the universe of discourse. Each relation
constant is mapped into a relation population.

Business objects and Concepts.
The universe of discourse of an Ampersand model includes

the business objects that exist in the modelled business. The
business objects are classified using concepts. A concept
presents a set of objects of the same type. Concepts can be
infinite or finite sets. The interpretations or populations of
concepts in models are finite sets of elements:

Client = {”Company Bits”, ”Person M.Bos”}.

Order = {”1”, ”2”, ”3}.

Relational basis set.
”An interrelationship among the objects in the universe

of discourse is called a relation... The set of relations em-
phasized in a conceptualization is called the relational basis
set”[19].

The interpretation of a binary relation

〈Relation〉 :: 〈ConceptA〉 ∗ 〈ConceptB〉
in Ampersand is a finite set of pairs defined on the popula-
tions of two concepts pCA × pCB . The finite set of pairs can
be empty.

For example, relation ”A Client issues an Order”

issues :: Client ∗Order [TOT]

may be interpreted as population
{(”Company Bits”, ”2”),
(”Company Bits”, ”3”),
(”Person M.Bos”, ”1”)}.

Any relation can be expressed as an active or a passive
sentence of requirements, the interpretations of such presen-
tations are equal (the syntax rule is define in section 2.2):
isAccepted = isAccepted˜= accepts.

Properties of Relations and Business Rules.
The properties of relations are the simplest business rules.

The properties UNI, TOT, INJ, SUR of relations are used
to enforce multiplicity information about data structures.

If a relation 〈Relation〉 :: 〈ConceptA〉” ∗ ”〈ConceptB〉 is
total, then each element of domain of 〈ConceptA〉 corre-
sponds to at least one element of domain of 〈ConceptB〉. If
the property is not satisfied, then it is violated.

For example, the model presented in subsection 2.3 con-
tains the instance ("1","Company A") of relation isIssued

(line -5-) and the instance ("Company A","12345") of rela-
tion hasAccount (line -10-) and this results in violation of
totality of relations isAddressed (line -12-), contains (line-
14-) and isAccepted (line -8-) that have no pairs with client
"Company A".

Expressions and Business Rules.
An interpretation of a business rule compares the popu-

lations of composed relations presented by the the left hand
side and the right hand side expressions.

A business rule may express that the left hand side com-
posed relation is equal to the right hand side composed re-
lation. In this case a business rule is maintained if the pop-
ulation of the left hand side composed relation contains the
same pairs as the population of the right hand side composed
relations. Otherwise, this business rule is violated.

A business rule may express that the left hand side com-
posed relation is a subset of the right hand side composed
relation (or the other way around). In this case this business
rule is maintained if the population of the the left hand side
composed relation is a subset of the population of the right
hand side composed relation.

For example, expression

isDelivered − | isAccepted; makeBill; isPaid

means that each pair of the population of the composed
relations

isAccepted; makeBill; isPaid

is a pair of the population of relation isDelivered. If a busi-
ness rule is not maintained, then it is violated.

2.5 Ampersand and UML
The static Ampersand model can be presented as a UML

domain model with the OCL expressions presenting busi-
ness rules. However, as it can be seen in [16] both the UML
and the Object Constraint Language (OCL) contain more
semantic elements than it is necessary for a business rules
based specification. So, Ampersand can be seen as a lan-
guage with the minimal semantics for business rules based
specification.

3. BEHAVIOURAL MODEL
OF AMPERSAND AND SIMULATION

In a behavioral model of a living business system new
elements of relations are created and other elements are
deleted, so that the populations of relations are changed.
New relations often contain concepts of other relations that
do not have the corresponding element in their populations.
So, with inserting or deleting of relations the properties of
relations and business rules become violated.

The Ampersand approach is supported with a simulator
for insert- and delete- actions that can potentially violate or
restore the completeness of relations and business rules. A
model in the simulator implements the following pair of the
static model (SM) and behavioural model (BM):

SM = (C, R, BR),

BM = (S, E, T)

• C is a finite set of concepts, C1,, CN .

• R is finite set of relations, R1,, RM .

• BR is a finite set of business rules, BR1, ..., BRK .

• S is a finite set of instances of all concepts, or a final
set of populations of concepts S = {pC1 , ..., pCN }. A
state is an element of this set where each population
pCJ is a final set of instances cJ of concepts: cJ ∈ pCJ .

The values of business rules are evaluated on instances.
For each state s 6= sf there is subsets (that may be
empty) of violated business rules. Any state can be
initial.

• E is a finite set of events e.
There are only two types of events in the current ver-
sion of Ampersand defined for each relation in the
static model:

(1) Insert an element of a relation (aJ , bK),

{pre : si = pC1 , ..., pCJ
,pCK

,pCN
,

aJ is of type CJ , bK is of type CK}

INSERT 〈Relations〉((aJ , bK))

{post : sj = pC1 , ..., (pCJ
∪ aJ), ..., (pCK

∪ bK),, pCN
}

(2) Delete an element of a relation (cJ , cK),

{pre : si = pC1 , ..., pCJ
,pCK

,pCN
,

cJ ∈ pCJ
, cK ∈ pCK

}

DELETE〈Relations〉((cJ , cK))

{post : sj = pC1 , ..., (pCJ
∩ cJ), ..., (pCK

∩ cK),pCN
}

Both event types change the populations of concepts
and the state of the model. All events of these types
for relations r ∈ R are possible, however the violated
business rules give the indication that the population
of elementary relations business rules can to changed
to make progress in the business process.

• T is a finite set of possible transitions.

T = {tk, k = 1, .., NT |

tk = (si, sj , e), si, sj ∈ S, e ∈ E}.
The events possible in a particular state si are defined
by the preconditions of events. The result state sj of
a transition (si, sj , e) is defined by the postcondition
of the event.
If the precondition of an event is not satisfied in a
state, then the event is ignored by the simulator and
the state is not changed.

The behaviour of this state-transition system is a set of
traces of accepted events.

The behavioural model and the simulator are used to val-
idate the model against use cases. In the simulator, every
accepted event is accompanied with a message describing
the violated business rules. Ideally each trace has to be fin-
ished in a new state where all business rules are complete.
In practice, the INSERTs and DELETEs can be infinitely
repeated. It is, however, assumed that the business logic and
business rules always give the user, who simulates traces, a
direction to the final state.

The following trace is a use case for our order-management
system tested in the Ampersand simulator:

TRACE-EXAMPLE:

INSERT-isIssued((”1”,”Company A”)),

Properties of isAddressed, contains, isAccepted and the business

rule (line 18)

isAccepted− |isIssued; hasAccount; notOverdrawn; isChecked

are violated

INSERT-isAddressed)(”1”,”Company P”)),
Properties of contains and the business rule for isAccepted are vi-

olated

INSERT-contains((”1”,”Software X”)),

The business rule for isAccepted is violated

INSERT-hasAccount((”Company A”,”67589”)),
The business rule for isAccepted is violated

INSERT-notOverdrawn((”67589”,”67589”)),
The business rule for IsAccepted is violated

INSERT-isInStock((”Software X”,”Company P”)),
The business rule for IsAccepted is violated

INSERT-isChecked((”67589”, ”Company P”)),
The business rule forIsAccepted is violated

INSERT-isAccepted((”1”,”Company P”)),
Business rule makeBill;billTo = isAccepted ;isIssued is violated

INSERT-makeBill((”Company P”,”B-500=2010”)),
Properties of billFor and business rule makeBill;

billTo = isAccepted ;isIssued are violated

INSERT-billFor((”B-500-2010”,”1”)),
Business rule makeBill;billTo = isAccepted ;isIssued is violated.

INSERT-billTo((”B-500-2010”,”Company A”)),
Business rule billTo |- isPaid is violated.

INSERT-isPaid((”B-500-2010”,”Company A”)),
Business rule isAccepted;makeBill;isPaid |- isDelivered is violated.

INSERT-isDelivered(”1”, ”Company A”))

3.1 Analysis of the current behavioural model
in Ampersand

The simulator of the Ampersand is used to estimate leg-
ibility of any step in a trace with respect to the business
rules. However, in the current model nothing prevents the
simulation from infinite traces. Moreover, the resolution of
violations of business rules can be always achieved by emp-
tying the data store (by the DELETE operations) which
would break the semantic link between model and its real-
world interpretation. A potentially promising way to fix this
fundamental flaw of invariant business rules is by introduc-
ing the semantics of event refusal into the model.

The current behavioural model of Ampersand demands
specification of all relations and business rules in one model.
It does not have semantics for separation of functionality of
services. This means that the Ampersand can be used only
for modelling of a monolith business system that possesses
the complete underling model. The models of large systems
become unobservable.

The current Ampersand model does not recognizes busi-
ness process instances. A trace in the current behavioural
model not necessarily corresponds to the process. For exam-
ple, a trace in the current behavioural model not necessarily
corresponds to the process of management of one order, it
may correspond to the management of a set of orders.

The events in the current model always come from the
user of the simulator. The message based communication of
services cannot be modeled.

In order to support modelling of service-oriented systems
the semantics of the static and the behavioural models of
Ampersand has to be changed.

Services are relatively independent parts of business func-
tionality that have to be modeled and tested separately and
then composed during the model execution in such a way
that the behaviour of services is preserved in the behaviour
of the complete system. The CSP parallel composition [5; 9]
of locally implemented services possess such a property, also
known as local reasoning or observational consistency. As
the distributed services communicate by message passing,

the CCS [23] composition technique can be used for mod-
elling of behaviour of distributed services.

4. SEMANTIC EXTENSIONS
TO MODEL SERVICES

We propose to apply the Protocol Modelling semantics [3]
for the Ampersand approach. As the Protocol Modelling
semantics is able to model services [10] and uses the CSP-
parallel composition and the CCS-composition for composi-
tion of behaviour of services, this ensures us that our new
behavioural model of the Ampersand will be suitable for
modelling of service-oriented systems. Our model exten-
sions are aimed to separate the state space of the model into
state spaces of services, enable modelling service instances
and define the protocol rules for of communication of service
instances.

4.1 Static Model of a Service Instance
We propose to define for each service the following static

model

SMService = (C, CD, R, RD, BR) where

- a set C = {C1, ..., CN} of own concepts;
ci is an element of Cn, n = 1, ..., N
- a set of concepts CD = {C1, ..., CK} of other services;
ck is an element of Ck, k = 1, ..., K.
- a set of relations R = {R1, ..., RM} that can be changed
by the service;
rm is an element of rm m = 1, ..., M .
- a set of relations RD = {R1, ..., RH} that are derived from
concepts of other services;
rh is an element of rh m = 1, ..., H.
- a set of own business rules BR = {BR1, ..., BRL} ;
brl is an element of brh m = 1, ..., h.

The concepts and relations form the state space of a ser-
vice. If the state spaces of services are intersected then these
services are not distributed and can read but cannot alter
the state space of each other.

The elements of business rules br1, ..., brL are business
rules evaluated on the elements of relations and concepts
c1,, cN , cd1,, cdK , r1, ..., rM , rd1, ..., rdH . An element of
a business rule is maintained if the the pair corresponding
to the element on the left hand side relation is equal to the
pair of the element of the right hand side relation.

A static model of a service instance.
includes one element of each concept and one element of

each relation. A statics model of a service instance is a tuple
of elements of all service concepts and relations and elements
of instances of business rules evaluated on the elements of
concepts and relations.

SMService Instance

= (c1,, cN , cd1,, cdK , r1, ..., rM , rd1, ..., rdH , br1, ..., brL).

4.2 Events
In the new model an event is defined in such a way that

it is able to change a subset of own relations R of a service
and to change the value of a subset of business rules of the
service.

An event is modeled with its metadata or its parameter
schema3. The parameters of events are concepts of the re-
lations, populations of which have to be changed or read
during the handling of the event.

The construction a parameter schema of an event is a part
of requirements engineering. The events are of the high level
and their names reflect their role in the business process.

For, example, in our order management system we recog-
nize events of type

•Issue Order(Order, Client, Item, Provider)

This event changes the populations of relations
isIssued :: Order ∗ Client,
isAddressed :: Order ∗ Provider and
contains :: Order ∗ Item
All concepts of these relations become types of parameters
of this event.

•Accept Order(Order, Client, Item, Provider)

This event changes the population of relation isAccepted ::
Order ∗ Provider
and should evaluate the business rules
isAccepted = isAddressed
isAccepted = contains; hasInStock
isAccepted = isIssued; hasAccount; notOverdrawn; isChecked

that can be done only when the populations relations of
other services (an account management and a stock man-
agement) can be accessed:
hasAccount :: Client ∗Account
notOverdrawn :: Account ∗NotOverdrawn
isChecked :: NotOverdrawn ∗ Provider
hasInStock :: Item ∗ Provider
The parameters of the event contain concepts needed to find
element of all those relations.

•Send Bill(Bill, Provider, Client, Order)

The parameters of the event contain concepts needed to
find element of all relations of the business rule
makeBill; billTo = isAccepted ; isIssued

•Pay Bill(Bill, Provider, Client, Order)

The parameters of this event needed to evaluate business rule:
isPaid− |billFor; isAccepted; makeBill; billTo

•Deliver Order(Order, Provider, Bill, Client)

The parameters of the event contain concepts for evaluation of
isDelivered− |isAccepted; makeBill; isPaid

4.3 Service Instances. Event Handling
A behavioural model BMService Instance of a service is defined

for a service instance.

SMService Instance =

(c1,, cN , cd1,, cdK , r1, ..., rM , rd1, ..., rdH , br1, ..., brL).

BMService Instance = (S, S0, Sf , E, T)

• A service has a set or an alphabet of high level events E that
it recognizes. Events that do not belong to the alphabet are
ignored by the service.

3Such approach to modelling events with attribute schemas
is used by M.Jackson [17], S.Cook and J.Daniels [24]
A.McNeile and N. Simons [3].

• A behaviour of a services instance is a process initiated
with an external event. There is always an initiating event
that creates an instance of a service. This event inserts an
initial combination of instances of some relations owned by
the service.

• A state of a service that does not contain this initial com-
bination of instances of concepts and relations is the initial
state S0 of the service instance. When a servies is instan-
tiated, the static model (the structure of instances of con-
cepts and relations) of a new instance is created.

After creating a service instance, the service goes to another
state, the initiating event is not allowed in this new state.
If an initiating event happens again with the same data, it
is refused.

• In any state s ∈ S of a service instance some concept in-
stances are filled in with data and same of them do not. So,
states have different sets of violated instances of business
rules. The events of the alphabet that add data to instances
of concepts and restore the violated business rules are pos-
sible in the state.

If an event, possible in the state, happens, then it is ac-
cepted by the service instance. The alphabet events that
are not possible in the state are refused in the state.

• The final state Sf of a service instance is a state where all
instances of concepts and relations of the static model of
the service instance are filled in with the data and all the
business rule instances are not violated.

• The transitions T are defined as triples each of which con-
tains
- two states with different data of instances of concepts and
different sets of violated instances of business rules and
- one high level event that changes the data of instances of
concepts.

4.4 Service Composition
The static model of a service-oriented system is a union of the

static models of service instances.
The behavioural model of a service-oriented system is a union

of the behavioural models of service instances and the behavioural
models of necessary composition techniques.

Composition of local services.
The alphabets of events of non-distributed services with inter-

cepted sets of concepts are intersected. If an event belongs to the
alphabets of several services, then these services use relations of
each other to evaluate their business rules. These services should
be synchronized. For services with intersected alphabets of events
the synchronization can be implemented as a CSP parallel com-
position algorithm:

• If all servies are in the state where the shared event can be
accepted, then the event is accepted by the composition of
services.

• If at least one of the services is in the state where the shared
event is refused, the event is refused by the composition.

The semantics of event refusal makes it possible to use the
CSP-parallel composition [5] of local services that have access to
the state of each other.

In the current behavioural model in Ampersand any element of
any relation can be inserted or deleted in any order, then the new
behavioural model restricts such a freedom. A static model of a
service instance defines the set of relations that have to be filled
in with data by a service instance. Thanks to the complex events,
adding and deleting of elements of some relations is synchronized
leading a service instance from one state to another. Thanks to
the sematic of event refusal, events are ordered (partially ordered)
so that a service-process can be constructed and simulated.

Composition of distributed services.
The alphabets of events of distributed services are not inter-

sected. However, the distributed services may have complemen-
tary events with the same metadata except the element type that
has two values: send-event (!e) or receive-event (?e).

The semantics of event refusal is also the necessary condition
to model communication and the CCS composition of distributed
services. If a service model is in the state where it can send mes-
sage !e and another service is in the state where it can receive
message ?e, then communication e can take place. Services then
update their state as defined by their models [23]. If the service-
receiver refuses to receive massage ?e, no behaviour composition
takes place and then the sender knows about this refuse.

The CSP composition technique guarantees the propertied of
local reasoning on services about the behaviour of their composi-
tion. The CCS composition is supported by the model checking
techniques for analysis of the behaviour of the result of service
composition [9]. The combination of these composition tech-
niques enables modelling and analysis of service-oriented systems.

The composition techniques need to be implemented in the
simulator. The implementation of the new semantics and the
composition techniques in Ampersand is our future work.

5. CONCLUSION
The Ampersand approach belongs to a growing group of declar-

ative approaches adding ”small amount of syntax to the logic for
structural descriptions”[8]. We have described the static and be-
havioural model of Ampersand and analyzed its ability to model
services. We have proposed the semantic changes necessary to en-
able modelling of services and their composition. The behavioural
model of a service is defined at the level of service instances. Its
semantics is enriched with the business process level events and
the refusal semantics of event handling. The proposed semantic
extensions enable behaviour composition techniques for composi-
tion of service models.

The behavioural model of services proposed in this paper may
be used by other declarative approaches [16] generating behavioural
models from static models.

Acknowledgement..
We thank the anonymous reviewers of the Second International

workshop on Behavioural Modelling-Foundation and Applications
(BM-FA 2010) for very useful comments and questions.

References
[1] A. Walker, M. McCord, J.F. Sowa, W.G. Wilson. Knowl-

edge Systems and Prolog: Developing Expert, Database and
Natural Language Systems. Addison Wesley, 1990.

[2] A.T. McNeile and E.E Roubtsova. Composition Seman-
tics for Executable and Evolvable Behavioural Modeling in
MDA. BM-MDA’09: Proceedings of the 1st Workshop on
Behaviour Modelling in Model-Driven Architecture, pages 1–
8, 2009.

[3] A.T. McNeile, N. Simons. Protocol Modelling. A Modelling
Approach that Supports Reusable Behavioural Abstractions.
Software and System Modeling , 5(1):91–107, 2006.

[4] Business Rules Group. Defining Business Rules.What Are
They Really? http://www.businessrulesgroup.org/
first paper/ br01c0.htm, 1993.

[5] C. Hoare. Communicating Sequential Processes. Prentice-
Hall International, 1985.

[6] D. Harel, M. Politi. Modeling Reactive Systems with State-
charts: The STATEMATE Approach. McGraw-Hill, 1998.

[7] D. Jackson. Alloy: A Lightweight Object Modelling
Notation”ACM Transactions on Software Engineering and
Methodology. ACM Transactions on Software Engineering

and Methodology (TOSEM) archive Volume 11 , Issue 2,
ISSN:1049-331X, pages 256 – 290, 2002.

[8] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press, Cambridge, MA, 2006.

[9] E.E. Roubtsova, A.T. McNeile. Abstractions, Com-
position and Reasoning. Proceedings of the 13th
IntŠl Workshop on Aspect-Oriented Modeling, Char-
lottesville. Virginia, USA, ACM DL,ISBN:978-1-60558-
451-5; http://doi.acm.org/10.1145/1509297.1509303, pages
19–24, 2009.

[10] E.E. Roubtsova, L. Wedemeijer, K. Lemmen, A.T. McNeile.
Modular Behaviour Modelling of Service Providing Business
Processes. Internation Conference on Enterpise Information
Systems, ICEIS 2009, May 2009. Milan. Italy , pages 338–
341, 2009.

[11] H. Mintzberg and A. McHugh. Strategy Formation in an
Adhocracy. Administrative Science Quarterly, Vol. 30, No.
2 (Jun., 1985), http://www.jstor.org/stable/2393104, pages
16–197, 1985.

[12] J. Woodcock and J. Davies. Using Z . MPrentice-Hall (ISBN
number 0-13-948472-8), 1997.

[13] J.L.G. Dietz. On the Nature of Business Rules. LNBIP 10,
pages 1–15, 2008.

[14] K. Jensen. Coloured Petri Nets. Springer, 1997.

[15] L. Kristensen, J. Jørgensen, K. Jensen. Application of
Coloured Petri Nets in System Development. J.Desel,
W.Reisig and G.Rosenberg (Eds) ACPN 2003, LNCS 3098,
pages 626–685, 2003.

[16] M. Albert, O.Cabot, C. Gómez, V.Pelechano. Automatic
generation of basic behavior schemas from UML class dia-
grams. Journal Software and Systems Modeling, Springer,
9(1):47–67, 2010.

[17] M. Jackson. Problem Frames. Addison-Wesley, 2001.

[18] M.P. Papazoglou. Service-oriented computing: Concepts,
characteristics and directions. page 3, 2003.

[19] M.R. Genesereth. Computational Logic. Stanford University
. USA.
http://logic.stanford.edu/classes/cs157/2009/
cs157.html, 2000.

[20] OMG. Model Driven Architecture: Object Constraint
Language, OMG Document Number: formal/2010-02-01,
http://www.omg.org/spec/OCL/2.2/PDF/.

[21] OMG. Unified Modeling Language, Superstructure, v2.2.
OMG Document formal/09-02-02 Minor revision to UML,
v2.1.2. Supersedes formal 2007-11-02, 2009.

[22] P. Kardasis, P Loucopoulos. Expressing and organizing busi-
ness rules. Information and Software technology, 46, 2004.

[23] R. Milner. Communicationg and Mobile Systems - the Pi-
Calculus. Cambridge University Press, 1999.

[24] S. Cook, J. Daniels. Designing Object Systems -Object-
Oriented Modelling with Syntropy. Prentice Hall, 1994.

[25] S. De Labey, M. van Dooren, E. Steegmans. ServiceJ: A
Java Extension for Programming Web Services Interactions
. IEEE International Conference on Web Services (ICWS
2007), pages 505–512, 2007.

[26] S. Joosten. Deriving Functional Specification
from Business Requirements with Ampersand.
http://icommas.ou.nl/wikiowi/images/
e/e0/ampersand draft 2007nov.pdf, 2007.

[27] Th. Giannakopoulos, D.J. Dougherty, K. Fisler,and S. Kr-
ishnamurthi. Towards an Operational Semantics for Alloy.
Book FM 2009: Formal Methods DOI 10.1007/978-3-642-
05089-3, LNCS 5850, Springer, pages 483–498, 2009.

