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Abstract. The aim of this paper is to explore the modeling of crosscut-
ting behavioral abstractions. We argue that behavioral aspects can be
seen as a particular kind of more general behavioral abstraction called
a “mixin”. Mixins support a compositional style of modeling, whereby a
complete class definition is constructed by composing one or more mix-
ins each of which represents a partial definition of the class. If used as
the replacement for inheritance, mixins can provide an expressive power
equivalent to multiple inheritance.

In this paper we use a modeling semantics called Protocol Modeling to
illustrate how mixins can be used to represent behavioral aspects. We use
the Crisis Management System case to illustrate the Protocol Modeling
approach, and describe how the model can be executed to give early
validation of its behavior.

We discuss the extent to which the Protocol Modeling approach is scal-
able to large problems, is suitable for evolutionary development and sup-
ports correctness analysis and testing.

1 Introduction

Behavioral modeling languages can be seen as the next generation of abstract
programming languages. This suggests that they are executable and capable of
representing all the abstractions that have to be implemented in a final system.
Objects, Services, Aspects, Components and Agents have to find their place and
be distinguished in models. But a unified framework that supports all of these
different types of abstraction using a common semantic base has yet to be found,
perhaps because the behavioral semantic constructs currently used in modeling
are not appropriate to this challenge.

The Protocol Modeling approach [7] experiments with new semantic con-
structs for describing system behavior in terms of event protocols. The approach
supports a highly compositional style of modeling, whereby a complete class defi-
nition is constructed by composing one or more partial definitions called mixins.
If used as the replacement for inheritance, mixins can provide an expressive



power equivalent to multiple inheritance [15]. But while mixins have been sup-
ported as constructs in programming languages3 they have not generally been
seen as a construct in modeling languages, which have tended to employ hierar-
chical inheritance structures. However, as we demonstrate, mixin based modeling
is a viable alternative with the potential for wider expressive power.

In Protocol Modeling, behavioral mixins are used as the building blocks of
a model. They are used both to construct inheritance like relationships (A is
a “kind of” B) and also to separate out common behavior that is shared by a
number of different entity classes. The modeling constructs of Protocol Modeling
allow one mixin to abstract over the events, states and data of others; so that a
single element of one mixin matches, or joins to, a number of different elements
in other mixins. This gives the compositional calculus a flavor of “weaving” that
is a feature of aspectual styles of software design. We suggest, therefore, that
mixins composed in this way can be seen as a technique of aspectual modeling.

In this paper we illustrate and justify this claim using a protocol model of a
Crisis Management System [20], a case study developed by Jörg Kienzle, Nicolas
Guelfi and Sadaf Mustafiz for the comparative study of aspect-oriented modeling
techniques.

This paper is organized as follows:
Section 2 provides an overview of the semantics of Protocol Modeling.
Section 3 describes how Protocol Modeling is used to describe the classes of a
system, their behavior and associated business process.
Section 4 describes how a Protocol Modeling is built in stages using the infor-
mation provided in a typical requirements specification.
Section 5 describes our protocol model of the Crisis Managements System case
and shows how Protocol Modeling embodies an aspectual style of modeling.
Section 6 describes briefly how, in general, a complete protocol model is con-
verted into a final, deployable, system.
Section 7 classifies Protocol Modeling among other aspect-oriented approaches
and emphasizes the features of Protocol Modeling that make it aspect-oriented.
Section 8 discusses some practical considerations in Protocol Modeling, includ-
ing some barriers to its use and the support it gives for model execution and
testability, evolutionary development, scalability and determination of correct-
ness.
Section 9 contains related work and conclusions.

2 Protocol Modeling

In this section we provide an overview of the semantics of Protocol Modeling,
sufficient to enable understanding of our solution to the Crisis Management
System (CMS) case. A complete account of Protocol Modeling can be found in
McNeile and Simons [7].

3 For example: Lisp, Simula, Python and Smalltalk.



2.1 Events

In Protocol Modeling, the basis of behavior specification is identification of oc-
currences of interest in the environment (or domain). These occurrences are
taken to be atomic and instantaneous. An “event” (more properly “event in-
stance”) is the data representation of an occurrence in the environment as a set
of data attributes. Every event is an instance of an event type. The type of an
event determines its metadata (or attribute schema), this being the set of data
attributes that completely define an instance of the event type. This approach to
modeling occurrences in the domain as events is identical to that used in other
event based modeling approaches, such as those described by Jackson and Cook
et al. [21, 30].

2.2 Protocol Machine

A Protocol Machine (hereafter referred to as just “machine”) is a reusable be-
havioral component of the model. A machine has a defined alphabet of event
types that it understands. When a machine is presented with an event it will
either ignore it, accept it or refuse it as follows:

– If the event is not in its alphabet, the machine ignores it.
– If the event that is in its alphabet, it will either accept it or refuse it.
– Acceptance or refusal of an event by the machine is determined by protocol

rules that are owned by the machine and that the machine evaluates both
before and after the event.

The protocol rules of a machine are normally depicted using a state transition
diagram, where the transitions exiting a state show the event types that the
machine accepts in that state. It is important to understand that “refusal” means
that the machine is unable to handle the event at all in its current state, and
this normally means that some kind of error message is generated back to the
environment. How or where such an error is generated is not of concern for
modeling purposes.

Between handling events, a machine has a well defined quiescent state, mean-
ing that it can undergo no further change of state unless and until presented with
a new event.

2.3 Local Storage

A machine has local storage which only it can alter, and only when moving to a
new state in response to an event. The local storage of a machine is represented
as a set of attributes associated with the machine.

A machine may read, but not alter, the local storage of other machines with
which it is composed. A machine may use its accessible storage (its own local
storage and the local storage of other machines composed with it) to compute
updated values of its own attributes when processing an event, and to compute
the value of derived attributes. In addition, a machine may use its accessible
storage to compute its own state, as we describe next.



2.4 Derived States

A protocol machine may have a state is derived on-the-fly rather than being
stored as part of the machine’s local storage. This is exactly analogous to the con-
cept of a derived attribute, as defined in modeling approaches such as UML [24].
The states of a derived state machine determine what events it accepts and
what events it refuses and in this sense the fact that states are derived makes
no difference to their use as determinants of the machine’s behavior.

For clarity of semantics, we do not mix derived and stored states in the defini-
tion of the same machine (although it is possible to compose derived and stored
state machines using CSP as described later in Section 2.6). Note that machines
with derived state are not “topologically connected” as the new state that re-
sults from a transition firing is not determined as the end point of a transition.
Further discussion can be found in the literature on Protocol Modeling [7].

2.5 Modal Semantics

We shall see later when discussing Use Cases in Section 4 that derived states
enable the definition of machines that have modal semantics, describing what is
desired rather than simply what is possible. These machines are used to model
the fact that the system may decide that a particular event is required and
may solicit or prompt the event from the actor responsible for performing it.
This gives protocols the expressive power to express workflow. The idea of using
modal machines to describe workflow rules has been described by McNeile and
Simons [8].

2.6 Composition

A protocol model of a system is a non-empty finite set of protocol machines. Each
machine presents a partial behavior and these partial behaviors work together
to create the behavior of the system.

The machines of a model are composed using a parallel composition operator
(P‖Q)4 essentially the same as that defined by Hoare in his process algebra,
Communicating Sequential Processes [10]:

– The alphabet of the composed machine is the union of the alphabets of the
constituent machines; and the local storage of the composed machine is the
union of the local storages of the constituent machines.

– When presented with an event the composed machine behaves as follows:
1. If both machines ignore the event, the composed machine ignores it;
2. If either machine refuses the event, the composed machine refuses it;
3. Otherwise the composed machine accepts the event.

4 Protocol Modeling approach also supports other composition forms [5, 14] for com-
position of distributed abstractions. However, these composition forms are beyond
the scope of this paper and we do not discuss them.



It is clear from this definition that the concept of event refusal5 is critical to
composition.

2.7 Concurrency and Determinism

Protocol machines are deterministic in the sense that executions of a protocol
model are repeatable. If a given sequence of events is presented to a model twice
starting from the same initial state, the final state of the model will be the same,
as will be the set of events that it could accept next. The reason for requiring
determinism is the ability this gives to argue about behavior based on traces6.

There is, however, no assumption that non-determinism may not be intro-
duced at physical design time if it is decided to distribute the model across
multiple (real or virtual) processors; but this must be done in such a way that
the behavior of the model is not broken by such a distribution.
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Fig. 1. Graphical Representation (Fragment of CMS)

3 Representation of a Protocol Model

In this section we illustrate how models are described in ModelScope, the tool
that we have used for developing and testing our model of the CMS case study.
Using examples from the CMS case study, we illustrate how the various features
of Protocol Modeling are used to address the requirements of the CMS system.
Later, in Section 8.2, we discuss how ModelScope is used to explore and validate
models.

5 Note that event refusal is not supported by the conventional semantics of UML
statecharts [12].

6 Note that determinism is not guaranteed by the conventional semantics of UML
statecharts [12].



3.1 Events and Machines

The event Create Worker is described as follows:

EVENT Create Worker

# Brings a new worker into existence

ATTRIBUTES Worker: Worker, Person Name: String,

Address: String, Date of Birth: Date,

Expertise: Mission Type

This lists the ATTRIBUTES for this event type and describes each using attribute
name: attribute type.

The protocol machine Worker is described as follows:

BEHAVIOUR Worker

# A worker, either Internal or External

INCLUDES Person

STATES created, deleted

TRANSITIONS @new*Create Worker=created,

created*Delete Worker=deleted

This description gives the possible states, {created, deleted}, for a Worker and
describes the behavior rules as a set of TRANSITIONS. Each transition is repre-
sented as starting state*event type=resulting state. The state @new represents the
initial state of the machine, the “black dot”. It can be seen that this textual
representation describes the state transition diagram shown in the central box
at the top of Figure 1. (This diagram is a part of the overall protocol model of
CMS that we describe later in the paper.) Note that the graphical representation
is partial, in that it does not show the attributes.

The INCLUDES entry specifies that whenever the Worker machine is instanti-
ated, an instance of the Person machine must be created too and composed with
it. The Person machine is:

BEHAVIOUR Person

# Attributes shared by all types of Person

ATTRIBUTES Person Name: String, Address: String, Date of Birth: Date

In this case, the included machine defines local storage attributes but does not
define any behavior (transitions). The result of the composition is that a Worker

will include the attributes defined in Person. The INCLUDES is the Protocol Mod-
eling analogue of inheritance, but is a composition operator and to emphasize
this difference we use a semi-hatched arrow (as opposed to the open arrow used
for inheritance in UML Class Diagrams). The Person machine can be seen as
more abstract than Worker as it is used by other machines: for instance it is also
used by Victim:

OBJECT Victim

# A Victim of a Crisis

NAME Person Name

INCLUDES Person



ATTRIBUTES Crisis: Crisis, Medical Condition: String

STATES added

TRANSITIONS @new*Add Victim=added

As can been seen here, a machine can be defined with both ATTRIBUTES and
TRANSITIONS. When a Victim is instantiated, its local storage is the union of the
set of attributes in the Victim and Person machines, following the semantics of
composition in Section 2.6. The Victim machine is concrete (instantiable) and
this is indicated by the use of the keyword OBJECT instead of BEHAVIOUR, and
the inclusion of the NAME entry which specifies which attribute to use to identify
instances of Victim in the ModelScope user interface. In the graphical view, as
in Figure 1, we use the double outline for the enclosing box to indicate that a
machine is concrete.

3.2 Structure of a Model

The INCLUDES structure of the mixins forms a partially ordered set7 (or “poset”).
This is normal structure for model elements that represents multiple inheritance,
as a given element may include more than one child and may be included in more
than one parent.

Note that this structuring is not apparent from the diagrams (Figures 1, 5
and 6) which have been drawn to fit in the limited space of a page. Given more
space, these diagrams could be refactored to show the semi-hierarchical form of
a partially ordered set, with all of the INCLUDE arrows pointing upwards.

As an example, consider Coordinator. This is instantiable (it uses the key-
word OBJECT) and creation of an instance entails instantiation of one of each of
{Coordinator, CMS Employee, Worker, Person, Employee Log In, Want Log In}: this
being the transitive closure of its INCLUDES relationships shown in Figure 1. With
the exception of Person, all of these machines have behavior and so, in accordance
with Section 2.6, the total behavior for Coordinator is the CSP composition of
the behaviors of these machines.

3.3 Attribute Handling

The convention in Protocol Modeling is that when an object (an assembly of
machines) accepts an event the values of the event attributes transfer to matching
attributes of the object; so when a Create Worker event is accepted by the model
the values of {Person Name, Address, Date of Birth} will be given to the new
Worker instance created. It is possible to define more complex updates with
explicit update logic where required. We shall show examples of this later in the
paper.

7 A poset consists of a set together with a transitive binary relation that indicates
that, for certain pairs of elements in the set, one of the elements precedes the other.



3.4 Derived States

As described in Section 2.4, some of the machines in a model can have derived
rather than stored states. The Want Log In machine at the top right of Figure 1
is an example, as is the machine Employee Log In in Figure 3. The ! prefixing
the name of the machine tells ModelScope that it has to execute a function
to determine the state of the machine. The code that calculates the state for
the Want Log In machine is shown in Figure 2 and that for Employee Log In in
Figure 3 (below the diagram).

In the graphical form we use the double outline to the state icons to indicate
that the state is derived. As mentioned in Section 2.4, machines with derived
states are not “topologically connected” as the state value is not driven by
transitions. The state value @any means “any state”.

Ties this java class with the 
machine “Want Log In”

Gets all the “Assignment Request” 
machines associated with this 

“Internal Resource” (= Employee)

Checks if this “Assignment 
Request” is still outstanding

Returns the state of the machine.

package AOMCase;
import com.metamaxim.modelscope.callbacks.*;

public class WantLogIn extends Behaviour {

public String getState() {
//Login is wanted if there is at least one outstanding Assignment Request for this Employee
Instance[] myAssignmentRequests = this.selectByRef("Assignment Request", "Internal Resource");
boolean logInWanted = false;
for (int i = 0; i < myAssignmentRequests.length; i++ ) {
if (myAssignmentRequests[i].getState("Assignment Request").equals("outstanding")) {
logInWanted = true;

}
}
return logInWanted ? "log in wanted" : "log in not wanted";

}

}

Fig. 2. State Derivation of the “Want Log In” Machine

3.5 Modal Machines

As described in Section 2.5, some machines may have modal semantics for de-
scribing workflow. An example is the machine Want Log In which determines
that an employee has outstanding requests for mission assignments and should
therefore log into the system to attend to them. The ModelScope definition the
machine is below. The entry TYPE DESIRED defines this as a modal machine.

BEHAVIOUR !Want Log In

# Makes a login desired if there is an

# outstanding Assignment Request for the Employee

TYPE DESIRED

STATES log in wanted, log in not wanted

TRANSITIONS log in wanted*Log In=@any

As already noted, this machine has a derived state as indicated by the ! prefixing
its name.



3.6 Actors

The machines of a model represent the objects of the domain and capture how
events change the states of these objects. We also have to consider who is respon-
sible for an event and this is modeled using the concept of Actors8. Different
events in the same machine may be the responsibility of different actors. As
an example, consider the events in the Employee Log In machine in Figure 1.
Responsibility for the Create Employee event, which sets up a new Employee in
the system, falls to the System Admin Department9. However, the Log In event,
which is also in the alphabet of this machine, is done by the employee him\herself
in order to access the system.

Actors are modeled completely separately from the machines and their behav-
ior, and serve to configure the user interface so that each Actor gets an interface
containing only the behaviors and events from the model that are appropriate
to his\her responsibility. An example of an ACTOR definition is given below.

ACTOR System Admin

BEHAVIOURS CMS Employee, Crisis Type, Mission Type, Needed Mission

EVENTS Create Worker, Set PDA Number, Set Login, Reset,

Create Crisis Type, Create Mission Type, Make Needed

Actors form a separate layer that configures the user interface for the differ-
ent users of the system. The Actor layer does not change the behavior of the
underlying protocol machine model in any way whatsoever.

4 Building a Protocol Model

The starting point for building a protocol model can vary, depending on the
nature and stage of the project. Sometimes a general understanding of the area
and the purpose of modeling is all that is available; and sometimes a detailed
requirements document has been prepared. We will describe the process that is
followed when starting from a written document such as that provided for the
Crisis Management System [20] (hereafter referred to as “the CMS Spec.”), as
this is quite typical.

Before describing the process, one aspect of Protocol Modeling needs to be
emphasized as it differs significantly from traditional approaches: the intention
and best practice in building a protocol model is that it is executable and testable
throughout the process of building an evolving model. This is useful and desirable
even if the final code of the system is being hand-crafted rather than generated.
We discuss the reasons for doing this later, in Section 8.2, and it is also well
explored in the authors’ paper [4].

The process of building a protocol model is described below as a number of
steps, but this is somewhat artificial. While the ordering of the steps does give
the flavor of the normal strategy for building a model, in practice the process is
very iterative and decisions can be revisited and changed at any time.
8 Essentially the same as the concept of Actor in UML Use Cases.
9 See Section 2.4.2 of the CMS Spec.



4.1 Step 1: Model the Domain

The starting point for building a protocol model is typically a Domain Model,
such as that shown in Figures 4 and 5 of the CMS Spec. Using this, we proceed
as follows to get to a first version of the model:

– Create an instantiable machine (using keyword OBJECT) for every concrete
object in the model.

– Specify the ATTRIBUTES for each machine. These are normally given as part
of the Domain Model.

– Define the lifecycle of each object, in terms of its STATES and the EVENTS that
bring an instance into existence and change its state. The lifecycle will not be
part of a standard Domain Model, which is normally just a static model. To
find out the lifecycle, other artifacts such as Use Cases or Business Processes
(Activity Diagrams) are used, or discussions held with domain experts.

This will result in a first cut protocol model, which can be executed. At this
stage the executable model allows domain objects to be instantiated and taken
through their lifecycles.

4.2 Step 2: Model Associations

As well as describing the dynamics of the creation and state changes of objects, a
protocol model also describes the dynamics of associations between objects: how
associations between objects are created and dissolved. Associations are created
by events that appear in the lifecycle of more than one object. For example, the
Domain Model in Figure 4 of the CMS Spec. shows associations between Crisis

and Crisis Type, and between Crisis and Coordinator. These associations are
created by the event Create Crisis that appears in the lifecycles of Crisis,
Crisis Type and Coordinator.

The second step of building a model is to add events to the basic model
formed in Step 1 to create and dissolve the associations in the model. Often,
many of these will be already be there as a result of Step 1 but this is not always
the case. In addition, the attributes of the objects in the model are checked
to ensure that they contain appropriate foreign keys for the associations: thus
the Crisis object should have attributes to hold the identifier of the associated
Crisis Type and Coordinator. The result is a model in which the associations
between objects can be created and dissolved.

4.3 Step 3. Model Inheritance

The third step is to model the inheritance. This involves refactoring the model by
using abstract, non-instantiable, machines (using keyword BEHAVIOUR) to factor
out attributes and/or behaviour that is common to multiple objects. Very often,
the Domain Model will have identified the candidate inheritance relationships
and these can be copied in the protocol model. Thus the inheritance structure
for various kinds of people and workers shown on the left hand side of Figure



5 in the CMS Spec. has been used to create an identical mixin structure in the
protocol model shown in Figure 6. Note the following:

– It is not necessarily a good idea to copy all inheritance relationships in the
Domain Model. For instance, the Domain Model shows (Figure 4 in the CMS
Spec.) Car Crash as a specialization of Crisis Type. However, copying this
would “hard wire” the different types of crisis that the system can handle
into the model. Instead, we have made the Crisis Types “soft”, so that new
types can be introduced into the system at run-time (using the Create Crisis

Type event).
– Protocol Modeling has natural support for multiple inheritance, whereas Do-

main Models are commonly built using only single inheritance and are cor-
respondingly constrained in the specialization/generalizarion relationships
that can be shown. For instance, Mobile Employee and Vehicle should (in
our view) both be specializations of Resource, but this would require Mobile
Employee to specialize from two parents. This constraint does not exist in
Protocol Modeling, and in our model Mobile Employee INCLUDES (= special-
izes) both CMS Employee and Internal Resource.

4.4 Step 4. Refine Machine Behavior

Normally the behavior built into a model in the early versions is a simplification
of the actual requirement, and is refined and improved in later steps. This re-
finement can involve refining the definition of a machine already defined in the
model, or adding new machines.

For instance, in Figure 5 the machine Employee Log In (near the top right
of the diagram) is a näıve description of logging on, as it assumes that the
Log In event will always work. This may be a reasonable assumption at early
stages, so that basic testing of the model can take place, but does not take into
account the fact that the password must be checked, or that there is a limit on
the number of attempts that may be made, or the possibility that no password
has yet been setup. To model these, the simple machine shown in Figure 5 is
replaced by the one shown in Figure 3. This has the same two states as the
original (logged in and logged out) but adds new states unitialized (for the
case where no password has been set up), trying (for the case where the user
is trying to enter a correct password) and violation (for the case where the
user has exceeded his\her attempt limit). The new machine has a derived state
rather than a stored one, but whether a state is derived or stored is private to
a machine so does not complicate the substitution. Finally, note that the new
machine requires a new event Reset to reset the machine if it is in the violation
state.

4.5 Step 5. Model Event Automation

The steps so far have assumed that all events are initiated from outside the sys-
tem. However, systems commonly initiate some events internally. For example,



Employee Log In  (Refined version)
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package AOMCase;
import com.metamaxim.modelscope.callbacks.*;

public class EmployeeLogIn extends Behaviour {

public String get State () {
// Derived State calculation
if (this.getString("Security Password").equals(""))  return " uninitialized ";
if (this.getInteger("Tries") == 0) return " logged out ";
if (this.getInteger("Tries") <= 3 && 

this.getString("Entered Password").equals(this.getS tring("Security Password"))) return " logged in ";
if (this.getInteger("Tries") >= 3) return " violation ";
return " trying ";
}

public void process SetLogin (Event event, String subscript) {
this.setString(“Security Password", event.getString ("Password"));
}

Store the entered password as the 
security password against which to 

1

State calculation. Returns exactly one 
of the values highlighted in red, 

indicating which state the machine is in.

}

public void process LogIn (Event event, String subscript) {
this.setString("Entered Password", event.getString( "Password"));
this.setInteger("Tries", this.getInteger("Tries") +  1);
}

public void process LogOut (Event event, String subscript) {
this.setString("Entered Password","");
this.setInteger("Tries",0);
}

public void process Reset (Event event, String subscript) {
this.setString("Entered Password","");
this.setInteger("Tries",0);
}

}

security password against which to 
compare when someone tries to log in.

Store the entered password to comp-
are against the security password and 

add one to the number of tries.

Reset values.

2

3

Fig. 3. Refined Employee Log In Machine

package AOMCase;
import com.metamaxim.modelscope.callbacks.*;

public class AccomplishInternalMission extends Event {

public void handleEvent() {
//Send the Accomplish Internal Mission event to the model to change its state to accomplished
this.submitToModel();
//Unassign all Resources for this Mission
Instance[] myAssignedResources = this.getInstance("Mission").selectByRef("Internal Resource", "Mission");
for (int i = 0; i < myAssignedResources.length; i++) {
Event releaseResource = this.createEvent("Release Internal Resource");
releaseResource.setInstance("Internal Resource", myAssignedResources[i]);
releaseResource.submitToModel();

}
}

}

Ties this java class with the event 
“Accomplish Internal Mission”

Gets all the  “Internal Resource” 
machines associated with this “Mission”.

Sends a “Release” event to release the 
“Internal Resource” from the “Missiom”.

Fig. 4. Automated Events to Release Resources on Mission Accomplishment



when a Mission is reported as accomplished, the System could automatically
release all resources assigned to the mission. This kind of event automation re-
quirement is addressed by associating a piece of logic with an event, executed
when an event is accepted by the model that generates further automated events.
This is indicated by prefixing the EVENT entry with !. Thus !Accomplish Internal

Mission has logic associated with it as shown in Figure 4.
Other examples of use of this technique in the CMS model are:

– Adding a Witness if the initial report of the Crisis contains a witness report
(attached to !Create Crisis).

– Determining what kinds of Internal and External Mission are needed for a
Crisis and creating recommendations to the Coordinator for such Missions
(attached to !Make Recommendations).

– Finding a suitable Internal Resource for a newly confirmed Mission and
creating a Request Allocation (attached to !Confirm Mission).

– Finding another suitable Internal Resource if a request for assignment is
declined (attached to !Decline Request).

4.6 Step 6. Define the Actors

As pointed out Section 3.6, the actor responsibility for events is modeled sepa-
rately from the underlying protocol machine model, using ACTORS. This is nor-
mally done once the model is substantially complete but before validating against
Use Cases.

4.7 Step 7. Validate against Use Cases

The final stage is to validate the model against Use Cases. Generally, we take
the view that Use Cases should be viewed as test cases whose satisfaction is
necessary (but not sufficient) for acceptability of the model.

Sometimes validation of the protocol model behavior against Use Case de-
scription can reveal the need to nuance the behavior of the system by adding
modal machines, as described in Section 2.5. For example, Use Case 3 Step 1a.1
in the CMS Spec. says that “System requests the CMSEmployee to login” and
this is represented as a modal machine, Want Log In, which determines that the
employee needs to log into the system in order to either accept or reject requests
to be assigned to a mission. In ModelScope, an event that has been determined
to be needed by a modal machine is highlighted in green in the user interface.

5 Protocol Model of the CMS Case Study

Our protocol model of the CMS case study is illustrated graphically in Figures 5
and 6. This graphical representation is intended as an overview and shows all
the machines of the protocol model, their states and their protocol (what events
are allowed in each state). It does not, however, show how data are handled:
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it omits attribute definitions, calculations for derived states and attributes, and
the algorithms for generation of automated events. The full source of the model,
including the full definition of data handling, can be downloaded from the Meta-
maxim website [6]10. The ModelScope execution tool is also available from this
site.

5.1 CMS Domain Model

Most of the machines in our model correspond exactly to the classes in the Do-
main Model given in [20]. These are the shaded machines shown in Figures 5 and
6 of this paper, and their INCLUDE structure, shown using semi-hatched arrows,
corresponds to the inheritance hierarchy of the Domain Model.

The other, non-shaded, machines Figures 5 and 6 of this paper fall into two
categories. Some are further domain objects that we have identified as needed to
support functionality required in the CMS application. Others represent behavior
that is sensibly modeled separately from the main behavior of an object and then
included as a separate machine. In some cases this separated behavior is shared
by more than one domain object, in which case it is included in all those to
which it relevant. Two examples from Figure 5 in the CMS model are:

– The machine Internal Resource that is included in Mobile Employee and
Vehicle. This machine models the ability of an object to be requested for,
and then possibly assigned to, a mission.

– The machine Worker Location that is included in Mobile Employee and External

Worker. This machine models the ability of a mobile worker to report his\her
current location.

In both cases, the included machine handles an aspect of behavior that is sepa-
rate and essentially orthogonal to that of the host machine. Because a protocol
machine recognizes events from its own alphabet and ignores other events, it
is both possible and natural to identify such behavioral aspects, concerned with
different subsets of the overall alphabet of the object, and model them as sepa-
rate machines. The resulting structure of behavioural aspects supports multiple
inheritance of both data and behavior. In this sense, behavioral aspects in Pro-
tocol Modeling are not a “bolt on” added to model cross-cutting concerns, but
the prime tool of modeling.

5.2 CMS Use Cases

As we described in Section 4.7, we use Use Cases to validate that the behavior
in the model is able to address the various ways in which it is intended that the
system will be used. We have verified our protocol model against all the Use
Cases using this technique. We illustrate below how our protocol model meeds
the requirements expressed in the three of the key Use Cases in the CMS Spec.

10 The model is available at: www.metamaxim.com/download/models/CMS.zip



UC1: “Resolve Crisis” .

UC1.1 Coordinator captures witness report.
Event Create Crisis allows a Coordinator to set up a Crisis and capture a
Witness report at the same time. Further reports may be added using event Add

Witness.

UC1.2, UC1.3 System recommends to Coordinator the missions that are to be
executed based on the current information about the crisis and resources. Coor-
dinator selects one or more missions recommended by the system.
When the Coordinator creates a Crisis, the included machine Mission Set

Recommendation is also created. Using the event Make Recommendations the Co-
ordinator can ask the System to create an appropriate set of Internal Mission

and External Mission machines. (The types of mission recommended for a cri-
sis is based on information previously set up to define the needed Mission

Types for each Crisis Type.) Each mission machine created includes a Mission

Recommendation machine that keeps track of whether the mission is confirmed or
rejected. This machine offers two events, Confirm Mission and Reject Mission,
allowing the Coordinator to select which of the system recommended missions
are actually to be executed. Because the behavior for recommending or rejecting
missions is identical for both internal and external missions, we use a com-
mon behavior Mission Recommendation and generic events Confirm Mission

and Reject Mission for both.

UC1.4 For each internal resource required by a selected mission, System assigns
an internal resource.
When the Coordinator uses Confirm Mission, the system finds an available Mobile
Employee with the right expertise (found in his attributes) and creates an Assign-

ment Request machine to request assignment of the employee to the mission. This
machine allows the Employee to either Accept Request or Decline Request. If the
Employee declines the request, the System automatically finds another candidate
and instantiates a new Assignment Request machine for this candidate.

UC1.5 For each external resource required by a selected mission, System requests
an external resource.
This step is similar to UC1.4.

UC1.6. Resource notifies System of arrival at mission location.
When an instance of machine Mobile Employee is created an instance of the in-
cluded machine Worker Location is created too. This machine allows an Employee
to use event Report Location to notify the system of his\her arrival at mission
location.

UC1.7. Resource executes the mission.
An Employee uses event Status Update to update his\her own status and the
status of the mission.



UC1.8. Resource notifies System of departure from mission location.
An Employee uses the event Report Location to report departure.

UC1.9. In parallel to steps 6-8, Coordinator receives updates on the mission
status from System.
The information available from the events Report Location, Status Update and
Accomplish Mission are available to the Coordinator.

UC1.10. In parallel to steps 6-8, System informs Resource of relevant changes
to mission (crisis) information.
The information available from the events Report Location, Status Update and
Accomplish Mission are available to the Employees.

UC1.11. Resource submits the final mission report to System.
The Employee uses event Accomplish Mission to submit a final report.

UC1.12. In parallel to steps 4-8, Coordinator receives new information about
the crisis from System.
The events Add Witness and Add Victim of machine Crisis are used to add further
information about the crisis.

UC1.13. Coordinator closes the file for the crisis resolution.
The Coordinator uses event Close Crisis in machine Crisis to close the file.
Event Close Crisis is possible when there are no outstanding missions. This
state is derived by machine Crisis Closable.

UC2: “Capture Witness Report”.

UC2.1, UC2.2. Coordinator provides witness information to System as reported
by the witness. Coordinator informs System of location and type of crisis as
reported by the witness
These are modeled by the protocol machine Witness with the corresponding
events Add Witness and Add Witness Details.

UC2.2a.1, UC2.2a.2. System contacts PhoneCompany to verify witness infor-
mation. PhoneCompany sends address\phone information to System and the
extended requirement UC2.5a. PhoneCompany information does not match in-
formation received from Witness.
These are modeled as machine Report Verification which is instantiated with
acceptance of event Add Witness.

UC2.2a.2 and UC2.5a represent different outcomes of witness verification mod-
eled as events Report Correct and Report Fake leading to the corresponding
states report correct and report fake.



UC2.3a.1, UC2.3a.2 System requests video feed from SurveillanceSystem. Surveil-
lanceSystem starts sending video feed to System and UC2.3a.3 System starts dis-
playing video feed for Coordinator.
These are modeled by machine Video Verification which is instantiated with
acceptance of event Add Witness.

UC2.5b.Camera vision of the location is perfect, but Coordinator cannot confirm
the situation that the witness describes or the Coordinator determines that the
witness is calling in a fake crisis.
This requirement represents a negative outcome of the verification. The video
verification should definitely contain a positive outcome of verification which is
omitted from the requirements.

UC10: “Authenticate User”.

This use case presents a commonly recognized Security aspect, modeling pass-
word protected access to functionality of a system.

UC10.1. System prompts CMSEmployee for login id and password.
This is captured by the state not logged in of protocol machine Employee Log

In either that shown in Figure 5 or its refined version shown in Figure 3.

UC10.2. CMSEmployee enters login id and password into System.
This requirements specifies attributes of event Log In, namely Login and Password.

UC10.2a. CMSEmployee cancels the authentication process.
This is modeled by two possibilities. One possibility is that the employee has
not yet succeeded in supplying a correct password. In this case he is not logged
on and can just walk away. The other possibility is that he has succeeded in
supplying a correct password. He is now logged in, so can log out.

UC10.3.System validates the login information.
These requirements are modeled by the refined version of Employee Log In shown
in Figure 3. The Log In event is allowed provided the system is not states logged

in or violation. The state of Employee Log In is computed by comparing the
security password in the system with the password entered in the Log In event. If
they do not match but the maximum number of tries (3) has not been exceeded,
Employee Log In is in the state trying. If the passwords are identical and the
maximum number of tries has not been exceeded Employee Log In is in the state
logged in.

UC10.3a, UC10.3a.1, UC10.3a.1a. System validates the login information. Sys-
tem fails to authenticate the CMSEmployee. CMSEmployee performed three con-
secutive failed attempts.
If the security password in the system with the password entered do not match
and the maximum number of tries (3) has been exceeded, Employee Log In is
in the state violation. The state can only be reset to logged out by using the
Reset event.



5.3 Some Observations

A requirements document is never perfect, and building a protocol model helps
identify gaps and inconsistencies. In particular, the discipline of identifying the
protocol states of every object, and determining the events that cause entry and
exit from every identified state, helps to ensure the completeness and coherence
of the behavioral requirements. The illustrations of this from the CMS case are:

– No means is provided for defining how the system should determine what missions
to recommend for a crisis (UC1.2, UC1.3). The system must have knowledge of
the relationship between crisis types and mission types to do this.

– Video verification (UC2.3a.2 and UC2.5b) should require a positive confirmation
of verification. No means of doing this is given.

– The need for a Reset (or a time out) (UC10) if the number of password tries is
exceeded, is not discussed in requirement document.

6 From Model to System

While the protocol model of a system is an executable artifact, it is not in general
deployable as the final system. Work is required to create an implementation
that has the appropriate physical characteristics. Information from the protocol
model can be directly used in this process, and an example is the extraction of
an Entity Relationship Model.

The attributes of the machines, given in the ATTRIBUTES entries of the ma-
chines in the model, are examined to identify those that represent “foreign key”
pointers. These are the attributes that are typed using other machines: for in-
stance Expertise: Mission Type in Mobile Employee. Such foreign key attributes
can be used to create the “entity relationship” model shown in Figure 7, for
instance the Expertise attribute results in the relationship marked with a star.
This model can then be used as the basis of database design using traditional
design techniques. The extraction of this model from the protocol model can be
automated.

The techniques and mechanisms used to convert a protocol model into a final
system design depends on a number of factors, including the technology platform
and the need to integrate with a pre-existing software architecture. Sometimes
the process can be entirely mechanized and sometimes it cannot. Discussion of
this is beyond the scope of this paper.

7 Aspect-Orientation of Protocol Modelling

In this section we discuss the claim of Protocol Modeling to be an aspect-oriented
approach, and the way in which aspects have been used in our solution to the
case study.
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Fig. 7. Entity-Relation Model of the Crisis Management System

7.1 CSP Composition as Weaving

The basis for any claim to support aspects is a notion of weaving, whereby two
independently defined parts of a model are combined but without explicit in-
vocation, such a method or subroutine call. The mechanism for composition in
Protocol Modeling is CSP composition, as described in Section 2.6. The seman-
tics of CSP composition can be thought of as “trace weaving” whereby the sets
of traces of individual protocol machines are woven to form the set of traces of
the system as a whole. Because it works by synchronizing machines on events
that are in the alphabets of both, CSP weaving uses events as join points. It is
in these terms that we discuss the aspect-orientation of Protocol Modeling.

7.2 Quantification of Event

Events in a protocol model may be described at different levels of abstraction
using GENERIC events. This has two uses:

– Where a number of different event types have the same treatment and ef-
fect in a given context. The difference between those event types may be
abstracted away in contexts where the difference is immaterial.

– To facilitate re-use, by allowing the creation of a generic definition that has
different interpretations in different contexts.



An example is of the first of these is Restricted Event, defined as:

GENERIC Restricted Event

# Events only allowed when an Employee is logged in

MATCHES Accept Request, Decline Request

This abstraction is used in the machine Logged In Check at the bottom left of
Figure 6 to model the fact that certain events are restricted (not possible) unless
an Employee is logged into the system, but Logged In Check doesn’t itself need
to differentiate between the different kinds of restricted event.

An example of the second is Create Internal Resource, defined as:

GENERIC Create Internal Resource

# Events that can create an Internal Resource

MATCHES Create Worker, Create Vehicle

When the model of is run in ModelScope the following messages relating to it
are generated as the model is compiled:

Generic ‘Create Internal Resource’ in object ‘Ambulance’ expands to: Create Vehicle
Generic ‘Create Internal Resource’ in object ‘Car’ expands to: Create Vehicle
Generic ‘Create Internal Resource’ in object ‘First Aid Worker’ expands to: Create Worker
Generic ‘Create Internal Resource’ in object ‘Super Observer’ expands to: Create Worker
Generic ‘Create Internal Resource’ in object ‘Truck’ expands to: Create Vehicle

Here the compiler is interpreting this generic event appropriately for the con-
text11.

Most of the weaving that takes place in a protocol model is defined in terms
of the event types of the domain. In this case, the weaving is completely sym-
metric and there is no formal way of distinguishing the “base behavior” and the
“advice”. However, as these examples show, the use of generic events provide for
a degree of quantification, whereby a single join point in the model, specified as
the label on a transition, can match multiple labels in other machines and/or
can match a different label depending on context. When generic events are used,
there is asymmetry between the machines that are woven and we can (perhaps)
identify the machine that uses the generic as representing the “advice”.

In the CMS case study there are 4 uses of generic events.

7.3 Symmetric approach

One view of aspect-oriented software development is that every major feature of
the system: core concern (business logic), or cross-cutting concern (additional
features), is an aspect, and by weaving them together (a process also called com-
position), you finally produce a whole out of the separate aspects. This approach
is known as the symmetric (or pure) aspect approach. However asymmetric (or
hybrid) approaches, where a base model is built using one technique and as-
pects are applied to it using a specialist aspect language, are more commonly
11 This uses a technique in Protocol Modeling called conditional repertoire entries,

which is described fully in [7]. This is a form of polymorphism.



package AOMCase;
import com.metamaxim.modelscope.callbacks.*;

public class LoggedInCheck extends Behaviour {

public String getState() {
//Determines whether the Employee is logged in or not
return (this.getInstance("Internal Resource").getState("Employee Log In").equals("logged in")) 
? "logged in" : "not logged in";

}

}

Fig. 8. State Derivation in Logged In Check

used perhaps since then there is less of a paradigm shift between object- and
aspect-orientation12.

Within this classification, Protocol Modeling is clearly a symmetric aspect-
oriented approach, as there is no difference in syntax and semantics between a
protocol machine that models an aspect and any other protocol machine in the
model.

7.4 Derived States as Join Points Refinements

It is worth mentioning that using derived states can help provide economy and
clarity in the expression machine behavior and interaction under composition.
For instance, the state derivation function of the machine Logged In Check shown
in Figure 8 abstracts over the states of the machine Employee Log In (the refined
version shown in Figure 3). Thus the state not logged in of Logged In Check

represents any of the states {logged out, trying, violation} of Employee Log

In. This machine can then be used to make a more succinct definition of the
constraints that being logged in versus not logged in has on the behavior of the
system as it only expresses these two states.

7.5 Mixins as Aspects

When modeling a system, the structure of the model will be dominated by the
model architect’s view of the key elements of the model and their relationships
and connections. The more a core modeling language imposes and constrains
the structure of a model, the less likely that all the elements of a problem and
their relationships can be accommodated, as the structure chosen for some el-
ements necessarily means that others cross-cut. This is sometimes referred to,
for instance by Ossher and Tarr, as the “Tyranny of the Dominant Decompo-
sition”[17]. This problem is immediately manifest with single inheritance struc-
tures, where the single hierarchy of the class structure is the tyrant, and the
modeler has to resort to using a asymmetric approach, with a specialist aspect
language being used to model those elements which clash with the main structure
of the model.
12 See the Wikipedia entry on “Aspect” at:

http://en.wikipedia.org/wiki/Aspect (computer science).



This is, in general, not the case with a mixin based inheritance approach
supporting multiple inheritance. As Filman and Friedman observe: “In using
inheritance to achieve aspects, single superclass inheritance systems require all
aspects to match the class structure of the original program, while multiple in-
heritance systems allow quantification independent of the programs dominant
decomposition. Mixins with multiple inheritance are thus a full aspect-oriented
programming technology”[25]. A similar observation is made by Apel et al. [28].
The use of mixin-based inheritance in Protocol Modeling qualifies it as aspect-
oriented. This is true in particular because the means by which mixins are com-
bined is CSP composition, and this entails weaving of trace behavior. However,
the aspects are pervasive in the model rather than being invoked as an excep-
tional technique to handle cross-cutting concerns.

To avoid structural tyranny it is necessarily to minimize the structure con-
straints imposed by the inheritance scheme on a model, and the partial ordering
of Protocol Modeling (see Section 3.2) is the minimum structuring possible. As
applied to the CMS case study, examination of the structures in Figures 5 and 6
shows that multiple inheritance, measured formally as the definition of machine
type that INCLUDES more than one other machine type, is used 7 times.

8 Protocol Modeling in Practice

This section describes various practical considerations in the use of Protocol
Modeling, both positive and negative.

8.1 Barriers to Protocol Modeling

The difficulties with application of Protocol Modeling fall into two categories,
one associated with the Protocol Modeling paradigm (1) and the other with the
nature of the problem which is to be addressed (2).

1. Paradigm Related. The Protocol Modeling paradigm is not well aligned to
the prevalent paradigm of current mainstream modeling languages (UML) and
programming languages (Java, C#, C++):

– The use of pure mixin based approach, contrasting with the prevalent focus
on inheritance;

– The use of process algebraic composition (CSP);
– The idea that the state of a state-transition machine may be calculated,

rather than simply driven by transitions;
– The idea of using modal semantics to model workflow.

These entail different ways of thinking so becoming fluent in the technique re-
quires time and effort, analogous to that required to convert from imperative
programming to OO programming. Moreover, the conceptual distance between
Protocol Modeling and current programming languages means that mapping



a protocol model to an implementation is not trivial. For instance, if the tar-
get programming language does not support multiple inheritance, other means
(which could include Aspect Oriented Programming techniques) may be required
to implement a model.

2. Problem Related. The second consideration is the nature of the problem being
addressed. Protocol Modeling has its own domain of applicability, which can be
roughly characterized as discrete event based systems which are based on what
Jackson, in his work on “Problem Frames” [22], refers to as an analogic model.
Examples of systems that do not conform to this characterization are: a word
processing system, a compiler and a chess game; and attempts to apply Protocol
Modeling to such problems will be problematic and unlikely to give a useful
solution.

8.2 Model Execution and Testability

Protocol models can be directly executed (tested) after any step of model evo-
lution, and this is supported by the ModelScope [6] tool, providing run-time
machine composition and a generic (metadata driven) user interface. The input
of the tool is the textual presentation of a protocol model described in Section
3, and Figure 9 shows the user interface as it appears when executing the CMS
case study. The tests are recorded in a test-file.

The value of providing stakeholders with working (executable) artifacts early
in the development process is well recognized. By presenting a working repre-
sentation of the intended system, model execution offers the potential to make
early modeling accessible to stakeholders even those who are not familiar with
technical modeling notations, and thus widens the circle of participants in review
activities. Such widening of the review activities can help to expose and elim-
inate misunderstandings between the development and user communities early
in the development lifecycle, when mistakes are still relatively cheap to correct,
and thus reduce risk and improve quality. The use of ModelScope in this context
is discussed fully in [4].

The tests are used to validate the model against use cases. Tests can also
validate other properties formulated by the developer. For example, “A Crisis
case can be closed only if all its missions have been accomplished”. Testing can
help to find counter examples to the properties formulated by the developer and
this usually means that the model needs a correction.

8.3 Model Evolution

In practice it is not possible to collect all the requirements for a model at once, so
models evolve. Evolution of a protocol model normally entails adding or deleting
protocol machines. As all protocol machines are equally composed, the changes
are local.

Typically, a behavior model is built in phases, each phase scoped by a Use
Case or part of a Use Case. The compositional nature of Protocol Modeling



Fig. 9. ModelScope Generic User Interface

makes this kind of incremental approach attractive and natural. In the CMS
case study, initial phases of modeling might be as follows:

– Phase 1: Events and machines for Crisis Type, Crisis, Mission Type and
Mission. Events and machines for Person, Worker, CMS Employee, Coordinator,
and Mobile Employee. Development of support for steps 1 - 2 of Use Case 1.

– Phase 2: Events and machines for Needed Mission, Mission Recommendation

and development of support for steps 3 - 5 of Use Case 1.
– Phase 3: Events and machines for Internal Resource and Assignment Request.

Development of support for steps 1 - 2 of Use Case 3.
– Phase 4: Events and machines for Witness, Victim, Phone Company, Surv-

eillance, Report Verification and Video Verification. Development of sup-
port for the steps 1 - 2 of Use Case 2.

In general, each increment will go through the stages of development described in
Section 4. After each increment the model is tested and, at key stages, validated
with users for correct interpretation of requirements. The validation process
allows users and other stakeholders to play scenarios through the model.

8.4 Scalability

Scalability concerns the ability of a technique to be applied to large, complex
problems without exhibiting non-linear growth in complexity [1]. In a composi-
tional modeling approach such as Protocol Modeling, scalability can discussed
in terms of the following questions:

1. How does the size of the state space of the solution grow as more complex
problems are modeled? In particular, can the approach prevent the phe-
nomenon of “state space explosion” resulting from combinatorial effects?

2. Is the author of the model able to maintain intellectual control over a model
as its size grows?

We discuss these in turn.



1. State Space. The ability of state transition approaches to scale to complex
behavior requires avoidance of the “state-space explosion”, whereby the number
of states that have to be used to describe a problem increases geometrically rather
than linearly with the size of the problem. Protocol Modeling is not vulnerable to
this phenomenon, as the new states of an object needed to describe new behavior
are added in new machines. This is in contrast with some other state-transition
approaches, such as that suggested by Mellor and Balcer [32], which do not
support composition so that all important state combinations of an object must
be represented as a single machine.

The size of state space of individual protocol machines is dictated by the
preferences of designers. Usually, the machines of a model follow the psycholog-
ical restriction that a person cannot control and reason at one moment more
than nine elements. This can be seen in the model in Figures 5 and 6 whose
individual machines do not use more than five states.

2. Intellectual Control. In Protocol Modeling, the key to maintaining intellectual
control over a model as it grows is the ability to do “local reasoning”: to reason
reliably about the behavior of the whole from examination of a part in isolation.
If the use of aspect technologies results in specifications becoming distributed
through multiple design artifacts (the base behavior or code definitions and
separate aspects that have been added to them) in such a way that no reliable
deductions about the behavior of the whole can be made from examination of a
part, then there is little chance of maintaining intellectual control over a complex
model.

Local reasoning in Protocol Modeling is based on the following property of
CSP composition: If we take a sequence, S, of events that is accepted by the
composition (M1 ‖ M2) of the two machines M1 and M2, then the subsequence,
S′, of S obtained by removing all events in S that are not in the alphabet of
M1 would be accepted by the machine M1 by itself. This property is sometimes
known as observational consistency [18] between a composite and its component
machines. The fact that CSP composition gives observational consistency was
established by Hoare [10]; however, Hoare’s formulation was based on the com-
position of algebraic processes and did not consider machines that access the
local storage of other machines (in particular, to derive their state) and a proof
extended to cover composed protocol machines is given in [3].

These ideas are very closely related to the categorization of aspects suggested
by Katz [31]:

– Spectative aspects can change the values of variables local to the aspect, but
do not change either the value of any variable or the flow of method calls of
the underlying system.

– Regulative aspects can affect the flow of control of the underlying system by
restricting operations, delaying some operations, or preventing the continu-
ation of a computation.

– Invasive aspects can change the values of variables and therefore the behavior
in the underlying system.



Katz was also concerned with the issue of how to reason about software behavior
in the presence of aspects, and argues that Invasive aspects make reasoning hard
or impossible. The fact that CSP composition cannot break trace behavior means
that protocol machines cannot be Invasive.

Another way of stating the observational consistency property is: compo-
sing another machine with M1 cannot “break its trace behavior” by overriding
a constraint that M1 says must be true. The property can be used to support
local reasoning thus: If the sequence S′ were not acceptable to M1, the original
sequence S could not have been acceptable to (M1 ‖ M2). This means that we can
use properties of M1 (or M2) alone to argue about the behavior of M1 ‖ M2. This
is key to retaining intellectual control. When creating a model, the author need
only ensure that the protocol constraints in each machine of the model are true
by examining each machine separately, as composition preserves the constraints
specified by each machine. This allows intellectual control to be maintained over
a model even if it comprises a large number of fine grained machines.

8.5 Correctness

By correctness we mean the use of formal proof techniques to establish behavioral
properties in a model. These are properties such as liveness or absence of deadlock
and are normally addressed using model proving techniques. This is a large topic,
and we only give a summary here.

Our view is that the approach needed to establish behavioral correctness
depends on the nature of the system. The key determinant is whether the system
is:

1. Deterministic in which case local reasoning about models combined with
model execution (testing) is generally sufficient for ensuring correctness. This
is because with a deterministic system you can repeat tests.

2. Non-deterministic in which case you must use global reasoning (model
checking) to ensure correctness. This is because the execution path of the
system cannot be determined in advance or controlled during execution,
and consequently repeatability of behavior cannot be assured. This makes
systematic testing hard or impossible.

Within the realm of Protocol Modeling, models fall into two classes correspond-
ing to the above:

– Protocol models that only use the deterministic parallel composition of
CSP13.

– Protocol models that use composition operators that introduce non-deter-
minism, such as the composition operator of Robin Milner’s CCS (or the
π-calculus) [26].

We discuss these in turn.
13 As Hoare himself notes: “. . . the concurrent operator by itself does not introduce

non-determinism.” [11].



1. Deterministic Models. The CMS case study (at least as we have modeled it
for this paper) falls into the first class of deterministic models. Here the ability to
apply local reasoning to the model and use a tool such as ModelScope is generally
enough to establish correctness. Both techniques are essentially needed. The CSP
parallel composition and its property of local reasoning guarantees that traces of
parts will not me reordered by the the composition. Model execution provides an
extra check that the composition of Protocol Machines produces desired behavior
and does not unnecessary behavioral constraints.

CSP composition always works, in that it never produces a composite that
fails in execution (generates a run-time error). However, it is possible to create
machines that interlock with each other. Consider the two machines:

P = x.y and Q = y.x where “.” indicates sequencing of events.

In this case P ‖ Q will refuse both x and y and so will not be able to engage
in any event. This won’t generate a run time error: it just won’t do anything.

It might be possible to devise a static analyzer that could detect such situ-
ations. However, as there are often cases in a model where refusal of the events
is the intention (e.g., as Logged In Check purposefully refuses Restricted
Events when the Employee is not authenticated by the system) such an analyzer
could only detect candidate problems: for instance by using model checking to
find states of the system in which composition causes all exit transitions to be
refused. We have not found this to be necessary as, in practice, model testing
is sufficient to detect such mistakes in the model by exercising the required Use
Cases.

2. Non-Deterministic Models. When modeling software that is required to be
distributed across multiple (real or virtual) unsynchronized processors it is nec-
essary to use composition operators that result in non-deterministic behavior
and then correctness must, in general, be established using model proving tech-
niques. Model proving generally requires that the multiple machines of a protocol
model be combined into a single machine for the purpose of global analysis of
the possible execution paths: for instance to establish that no path ends in a
state from which there no exit transition (a deadlock). This is usually done with
the help of specialist model-proving tools.

This application of model proving to Protocol Modeling is a subject of current
research and beyond the scope of this paper, but the following general statements
can be made:

– Protocol models that comprise a fixed population of machines lend them-
selves well to traditional model proving techniques. The general approach
is to form a state space of the model as whole as the Cartesian product of
the state spaces of the constituent machines of model, and then draw the
valid transitions between the states of this global state space according to
the rules of the composition operators (normally both CSP and CCS) used
in the model. The resultant overall machine can then be analyzed for the
presence (or absence) of topological properties corresponding to desired (or



pathological) behavioral properties. The proving is a mechanical process that
can be carried out by a software tool.

– As described in Section 7, derived states can be used to abstract over the data
and states of a model and hence maximize the economy of the state space
required. This reduces the chance that model proving becomes untractable
because of the size of the global state space that needs to be constructed
and explored.

– Because, as noted in Section 2.4, derived state machines are not “topological”
extra steps are sometimes needed in the model proving process to convert
these machines into a form that allows them to be included in the analysis.

These techniques have useful application. For instance, the combination of model
proving and the ideas described in Section 2.5 for representing modality makes
it possible to conduct formal progress analysis on distributed (multi-party) col-
laborative workflows whereby it is possible to establish analytically that a col-
laboration will always reach a successful conclusion. Another example of formal
proving techniques using protocol models is the work by McNeile on choreogra-
phy realizability [2].

9 Related Work and Conclusion

In this section we make an overview of some related aspect based modeling
approaches and draw some conclusions.

9.1 Related Work

We have chosen the workflow based Theme approach, the RAM approach using
multiple behavioral views and approaches that use StateCharts for capturing of
aspects, to show that composition semantics may enrich those approaches and
make them more flexible.

Theme. The Theme [29, 13] approach is used both at requirements and the
design level. At the requirements level Theme/Doc exposes the relationship be-
tween behaviors (features) in the model. The Design level Theme/UML supports
modeling features and aspects in UML. Theme/Doc views are mapped onto the
Theme/UML model allowing traceability of requirements.

At the requirements level a designer identifies actions as verbs in textual
requirements. Each action potentially becomes a theme. The actions have rela-
tions via concepts. Actions found in different themes become potential aspects.
An action view of each theme is a graph that contains actions and entities. The
size of this view grows with the number of entities and actions in the model. The
scalability is achieved by the separation major and minor actions. “Major ac-
tions become themes, while minor actions are slotted to become methods within
a theme” [13].



The action view “drives composition semantics for design in Theme/UML” [13].
The action view is analyzed to produce the Theme/UML specification of actions-
aspects as a combination of a class and sequence diagrams. So, actions in the
Theme approach are not elementary, they are activities. If a Theme/action is
reused in the model, the pointcuts are specified in the Theme/UML view.

The evolution of the model is handled by re-generating the views for the new
set of requirements. This we see as a shortcoming of this approach.

Reusable Aspect Models (RAM). In the Reusable Aspect Models (RAM) [19]
approach a model of a concern or functionality “contains up to three different
kinds of views: a structural view, state views and message views - which are
grouped together in an aspect model, a special UML package” [19].

The structural view is expressed using a UML class diagram where the spec-
ified public methods of classes are annotated with “+”. The structural view of
a concern may present only classes and associations relevant to the concern.
The structural view may contain “incomplete classes, i.e. entities that are not
directly or indirectly bound to model elements of some other aspect models, and
methods whose name and signature are yet to be determined”. These incomplete
classes are called “mandatory instantiation parameters” and they are recognized
by | character attached to their name and as UML template parameters on the
right hand side of the structural view compartment [19].

The classes may later be composed by the weaver with other classes when
the aspect is instantiated or bound to a base model. The class diagrams are
composed using the algorithm proposed in France et al. [27]. The composed el-
ements at an aspect model and a target model must be instances of the same
metamodel class and have matched signature, i.e two elements with the same
signature represent the same concept and composed.

For each class (complete or incomplete) defined in the structural view one
state view is defined. “Using a UML state diagram, the state view of an entity
describes the internal states of that entity that are relevant within the concern. A
state is relevant if it affects the messages that the entity is capable of processing.
In UML terms, the state view compartment describes the usage protocol of the
entity. To be complete, the state diagram must contain each method defined in
the structural view for the entity at least once [19]”.

For incomplete classes, an aspect state diagram consists of two parts: a point-
cut and an advice. “The pointcut defines the states and transitions that have to
exist in the target state diagram, i.e. the state diagram with which the aspect
state diagram is composed.”

The advice defines the state diagram that replaces the occurrence of the
pointcut in the target state diagram. “States that are not directly or indirectly
bound to states defined in a standard state diagram are mandatory instantiation
parameters of the state view [19]”. So far, weaving of state views is not supported.

For each public method defined in the structural view, there is at most one
message view. “Each message view describes, using a UML sequence diagram, the



sequencing of message interchanges that occur between entities when providing
the functionality offered by the public method. Hence, if the functionality does
not involve any message exchanges, but only computation internal to the entity,
no message view compartment is shown for that method.” A message view has
two parts: a pointcut and an advice.

The message views are woven on the basis of the algorithm known as Generic
weaving with Kermeta [9, 36]. The result of weaving of sequence diagrams is a
sequence diagram.

The RAM approach generates aspect dependencies. The dependencies are
declared in the aspect heading. “If A depends on B, A explicitly states that
it reuses the functionality provided by B by instantiating B. If an aspect A
depends on an aspect B, i.e. an incomplete class X (or | X) in the structural
view of an aspect A needs to be composed with a complete class Y defined in
B, the state view X in A might also need to refine the state view Y. In this
case, A has to define a binding directive that maps the incomplete entities of As
structural view, state view or message view into the structural view, state view
or message view of the aspect defining Y. Instantiations and binding directives
can be one-to-many or many-to-one, if needed” [19]. Aspect dependencies are
kept unresolved until the aspects are woven with the final application model. An
aspect A can have complex dependencies in form of a directed acyclic graph.

The weaving algorithm resolving aspect dependencies is recursive. It pro-
cesses the directed acyclic graph of dependencies step by step in depth-first
order. All aspects should be woven with a base application model.

Before weaving each aspect model goes through consistency checks, then the
adherence of aspect models to the instantiation and binding rules is checked. The
third of consistency checks is performed within the independent aspect model
and within the final base model.“For each object life line in the sequence dia-
gram, the incoming messages to that object are presented in sequence to the
state diagram describing the protocol of the corresponding class. If the state di-
agram refuses a message, consistency is violated” [19]. We should notice that the
refuse semantics used for consistency checkers is different from the semantics of
refuse in Protocol Modeling. In Protocol Modeling “refuse” is not a violation, it
is a normal situation when a protocol machine being in its current state cannot
accept an event.

RAM models are not executable. The authors plan to extend the approach
“by adding yet another kind of view that describes the detailed execution paths
for individual methods. Detailed method algorithms could be expressed, for in-
stance, with UML activity diagrams or SDL. With this additional view, RAM
would be capable of generating final application models that are fully exe-
cutable [19].”

Approaches using Statecharts. There are several approaches using statecharts
for capturing aspects.



Mahoney et al. [23] use the semantics defined by D. Harel [12]: “When event a
occurs in state A, if condition C is true at the time, the system transfers to state
B”. Moreover the authors exploit the AND-composition of several independent
(orthogonal) statecharts and “the key feature of orthogonal statecharts is that
events from every composed statechart are broadcast to all others. Therefore
an event can cause transitions in two or more orthogonal statecharts simultane-
ously” [23].

We should notice that this semantics does not define what happens if one of
orthogonal statecharts is in a such a state where it cannot accept the broadcast
event. This incomplete semantics does not allow use of CSP or CCS composi-
tion for orthogonal statecharts. The most that can be said is that the result of
the composition of orthogonal statecharts is a computation tree that represents
partial behavior of the system when the orthogonal statecharts are in suitable
states to accept broadcasted events.

The UML Specification [24] includes two behavioral semantics for finite state
transition systems: Behavioral State Machines (BSM) and Protocol State Ma-
chines (PSM) and several approaches [16, 34] use these as a basis for defining
aspect semantics.

High-Level Aspects (HiLA) [16] uses UML State Machines with declara-
tive specification of concerns such as synchronization of orthogonal regions or
history-based behaviors. The authors use Behavioral State Machines (BSM) se-
mantics. The semantic model used for Behavior State Machine Execution in
UML2 (which was first included in UML at version 1.5) is based on the “Recur-
sive Design” method of Shlaer and Mellor [33] whose work has been mainly in
the real-time/embedded systems domain. The approach is based on using state
machines to model so-called “active objects”: objects whose instances execute
autonomously and asynchronously (i.e., as if executing on independent threads)
resulting in system behavior that is inherently non-deterministic [35].

The authors of paper [16] notice that “UML state machines work fine as
long as the only form of communication among states is the activation of the
subsequent state via a transition. More often than not, however, an active state
has to know how often some other state has already been active and/or if other
states (in other regions) are also active. Unfortunately, behavior that depends
on such information cannot be modeled modularly in UML state machines.” We
agree with this observation, which our use of derived states avoids.

The asynchronous and non-deterministic composition semantics of BSMs
makes reasoning about behavior difficult. Complete analysis of the behavior of
the model must allow, in general, for arbitrary queuing of events between ob-
jects and for the accumulation of deferred events. If a model comprises a number
of communicating objects this results in a large number of possible execution
states for the system as a whole, and reasoning on models is impossible without
model checking algorithms. This does not make sense when models are being
developed, as they are in most projects, in an iterative manner and subject to
frequent change; and it is hard to reconcile this semantic basis with the charac-



teristics of the business information systems domain, where behavioral issues are
related to transactional integrity and business rules, and strictly deterministic
behavior of business logic is important to ensure repeatability, auditability and
testability14.

While there is some native support in Shlaer/Mellor for behavior abstraction
through the use of “polymorphic events”, this has not been included in the
UML BSM standard; nor is there is any method to compose multiple machines
to form the behavior of a single classifier. This places severe limits on the ability
of BSMs to describe generalization/specialization of behaviors or to support
behavior re-use. As described in [32], a single object class is modeled with a
single state machine, and only concrete classes are modeled. This also means that
crosscutting behaviors (aspects) have to be addressed by other means, potentially
further complicating model analysis.

As noted above, UML also supports Protocol State Machines (PSM). These are
not related to Shlaer/Mellor and have semantics that define the legal lifecycles
of a classifier (an object, interface, or port) in terms of the allowable order of
invocation of its operations.

PSMs can (to a limited extent) be composed. “A classifier may have sev-
eral protocol state machines. This happens frequently, for example, when a class
inherits several parent classes having a protocol state machine, when the proto-
cols are orthogonal” [24]. In this context, “orthogonal” means that they have a
disjoint alphabets.

The occurrence of an event that a PSM cannot handle is viewed as a precon-
dition violation and the consequent behavior of the PSM is left open: “The inter-
pretation of the reception of an event in an unexpected situation (current state,
state invariant, and pre-condition) is a semantic variation point : the event can
be ignored, rejected, or deferred, an exception can be raised, or the application
can stop on an error. It corresponds semantically to a pre-condition violation, for
which no predefined behavior is defined in UML” [24]. Only if such a situation
were interpreted as a refusal could CSP style composition be supported, but this
does not seem to be intention of the specification.

PSM semantics are simpler and more abstract than the BSM semantics, and
this makes them more widely usable and easier to analyze. However, as evidenced
by the language used to describe them, PSMs are clearly positioned in UML as
contracts of legal usage; and this gives it a different meaning and role from that
of BSMs. While a contract must specify what is legal, it not concerned with
the mechanism by which non-legal behavior is avoided, nor is it required to
specify the effect of violation. In other words: a contract cannot be used as the
instrument that guarantees its own satisfaction. It would therefore be a logical
error to execute PSMs directly or to generate code from them; and this seems
to us to make their use as a means of specifying behavioral aspects problematic.
14 We note that the commercial tools that support this approach (such as those from

Telelogic, Kennedy Carter and Mentor Graphics) are not well adapted for use in the
business information systems domain and are positioned by their vendors to target
the real time/embedded market.



9.2 Conclusion

In this paper we have shown an approach to aspect modeling using Protocol
Modeling, a mixin-based behavioral modeling technique. Protocol Modeling em-
bodies semantics needed to capture and compose behavioral aspects, including:
events represented as data, machines with state and local storage, state deriva-
tion and formal parallel composition techniques. This enables behavioral aspects
and behavior inheritance to be handled by a common mechanism and thus pro-
vides a unified view of these different abstraction techniques.
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